
Lemur Documentation
Release 0.5.0

Kevin Glisson

Dec 22, 2017

Contents

1 Installation 3
1.1 Quickstart . 3
1.2 Production . 8

2 User Guide 15
2.1 User Guide . 15

3 Administration 25
3.1 Configuration . 25
3.2 Command Line Interface . 34
3.3 Upgrading Lemur . 35
3.4 Plugins . 36
3.5 3rd Party Plugins . 38
3.6 Identity and Access Management . 38

4 Developers 39
4.1 Contributing . 39
4.2 Writing a Plugin . 42
4.3 REST API . 48
4.4 Internals . 100

5 Security 183
5.1 Security . 183

6 Doing a Release 185
6.1 Doing a release . 185

7 FAQ 187
7.1 Frequently Asked Questions . 187

8 Reference 189
8.1 Changelog . 189
8.2 License . 192

Python Module Index 197

HTTP Routing Table 199

i

ii

Lemur Documentation, Release 0.5.0

Lemur is a TLS management service. It attempts to help track and create certificates. By removing common issues
with CSR creation it gives normal developers ‘sane’ TLS defaults and helps security teams push TLS usage throughout
an organization.

Contents 1

Lemur Documentation, Release 0.5.0

2 Contents

CHAPTER 1

Installation

Quickstart

This guide will step you through setting up a Python-based virtualenv, installing the required packages, and configuring
the basic web service. This guide assumes a clean Ubuntu 14.04 instance, commands may differ based on the OS and
configuration being used.

Pressed for time? See the Lemur docker file on Github.

Dependencies

Some basic prerequisites which you’ll need in order to run Lemur:

• A UNIX-based operating system (we test on Ubuntu, develop on OS X)

• Python 3.5 or greater

• PostgreSQL 9.4 or greater

• Nginx

Note: Lemur was built with in AWS in mind. This means that things such as databases (RDS), mail (SES), and TLS
(ELB), are largely handled for us. Lemur does not require AWS to function. Our guides and documentation try to be
as generic as possible and are not intended to document every step of launching Lemur into a given environment.

Installing Build Dependencies

If installing Lemur on a bare Ubuntu OS you will need to grab the following packages so that Lemur can correctly
build it’s dependencies:

$ sudo apt-get update
$ sudo apt-get install nodejs-legacy python-pip python-dev python3-dev libpq-dev
→˓build-essential libssl-dev libffi-dev nginx git supervisor npm postgresql

Note: PostgreSQL is only required if your database is going to be on the same host as the webserver. npm is needed
if you’re installing Lemur from the source (e.g., from git).

Now, install Python virtualenv package:

3

https://github.com/Netflix/lemur-docker

Lemur Documentation, Release 0.5.0

$ sudo pip install -U virtualenv

Setting up an Environment

In this guide, Lemur will be installed in /www , so you need to create that structure first:

$ sudo mkdir /www
$ cd /www

Clone Lemur inside the just created directory and give yourself write permission (we assume lemur is the user):

$ sudo useradd lemur
$ sudo passwd lemur
$ sudo mkdir /home/lemur
$ sudo chown lemur:lemur /home/lemur
$ sudo git clone https://github.com/Netflix/lemur
$ sudo chown -R lemur lemur/

Create the virtual environment, activate it and enter the Lemur’s directory:

$ su lemur
$ virtualenv -p python3 lemur
$ source /www/lemur/bin/activate
$ cd lemur

Note: Activating the environment adjusts your PATH, so that things like pip now install into the virtualenv by default.

Installing from Source

Once your system is prepared, ensure that you are in the virtualenv:

$ which python

And then run:

$ make release

Note: This command will install npm dependencies as well as compile static assets.

You may also run with the urlContextPath variable set. If this is set it will add the desired context path for subsequent
calls back to lemur.

Example:
urlContextPath=lemur
/api/1/auth/providers -> /lemur/api/1/auth/providers

$ make release urlContextPath={desired context path}

4 Chapter 1. Installation

Lemur Documentation, Release 0.5.0

Creating a configuration

Before we run Lemur, we must create a valid configuration file for it. The Lemur command line interface comes with
a simple command to get you up and running quickly.

Simply run:

$ lemur create_config

Note: This command will create a default configuration under ~/.lemur/lemur.conf.py you can specify this
location by passing the config_path parameter to the create_config command.

You can specify -c or --config to any Lemur command to specify the current environment you are working
in. Lemur will also look under the environmental variable LEMUR_CONF should that be easier to setup in your
environment.

Update your configuration

Once created, you will need to update the configuration file with information about your environment, such as which
database to talk to, where keys are stored etc.

$ vi ~/.lemur/lemur.conf.py

Note: If you are unfamiliar with the SQLALCHEMY_DATABASE_URI string it can be broken up like so:
postgresql://userame:password@<database-fqdn>:<database-port>/<database-name>

Before Lemur will run you need to fill in a few required variables in the configuration file:

LEMUR_SECURITY_TEAM_EMAIL
#/the e-mail address needs to be enclosed in quotes
LEMUR_DEFAULT_COUNTRY
LEMUR_DEFAULT_STATE
LEMUR_DEFAULT_LOCATION
LEMUR_DEFAUTL_ORGANIZATION
LEMUR_DEFAULT_ORGANIZATIONAL_UNIT

Setup Postgres

For production, a dedicated database is recommended, for this guide we will assume postgres has been installed and
is on the same machine that Lemur is installed on.

First, set a password for the postgres user. For this guide, we will use lemur as an example but you should use the
database password generated by Lemur:

$ sudo -u postgres -i
\password postgres
Enter new password: lemur
Enter it again: lemur

Once successful, type CTRL-D to exit the Postgres shell.

Next, we will create our new database:

1.1. Quickstart 5

Lemur Documentation, Release 0.5.0

$ sudo -u postgres createdb lemur

Note: For this guide we assume you will use the postgres user to connect to your database, when deploying to a VM
or container this is often all you will need. If you have a shared database it is recommend you give Lemur its own user.

Note: Postgres 9.4 or greater is required as Lemur relies advanced data columns (e.g. JSON Column type)

Initializing Lemur

Lemur provides a helpful command that will initialize your database for you. It creates a default user (lemur) that is
used by Lemur to help associate certificates that do not currently have an owner. This is most commonly the case when
Lemur has discovered certificates from a third party source. This is also a default user that can be used to administer
Lemur.

In addition to creating a new user, Lemur also creates a few default email notifications. These notifications are based
on a few configuration options such as LEMUR_SECURITY_TEAM_EMAIL . They basically guarantee that every
certificate within Lemur will send one expiration notification to the security team.

Additional notifications can be created through the UI or API. See Creating Notifications and Command Line Interface
for details.

Make note of the password used as this will be used during first login to the Lemur UI.

$ cd /www/lemur/lemur
$ lemur init

Note: It is recommended that once the lemur user is created that you create individual users for every day access.
There is currently no way for a user to self enroll for Lemur access, they must have an administrator create an account
for them or be enrolled automatically through SSO. This can be done through the CLI or UI. See Creating Users and
Command Line Interface for details.

Setup a Reverse Proxy

By default, Lemur runs on port 8000. Even if you change this, under normal conditions you won’t be able to bind to
port 80. To get around this (and to avoid running Lemur as a privileged user, which you shouldn’t), we need setup a
simple web proxy. There are many different web servers you can use for this, we like and recommend Nginx.

Proxying with Nginx

You’ll use the builtin HttpProxyModule within Nginx to handle proxying. Edit the
/etc/nginx/sites-available/default file according to the lines below

location /api {
proxy_pass http://127.0.0.1:8000;
proxy_next_upstream error timeout invalid_header http_500 http_502 http_503 http_

→˓504;
proxy_redirect off;
proxy_buffering off;

6 Chapter 1. Installation

Lemur Documentation, Release 0.5.0

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}

location / {
root /www/lemur/lemur/static/dist;
include mime.types;
index index.html;

}

Note: See Production for more details on using Nginx.

After making these changes, restart Nginx service to apply them:

$ sudo service nginx restart

Starting the Web Service

Lemur provides a built-in web server (powered by gunicorn and eventlet) to get you off the ground quickly.

To start the web server, you simply use lemur start . If you opted to use an alternative configuration path you can
pass that via the --config option.

Note: You can login with the default user created during Initializing Lemur or any other user you may have created.

Lemur's server runs on port 8000 by default. Make sure your client reflects
the correct host and port!
lemur --config=/etc/lemur.conf.py start -b 127.0.0.1:8000

You should now be able to test the web service by visiting http://localhost:8000/ .

Running Lemur as a Service

We recommend using whatever software you are most familiar with for managing Lemur processes. One option is
Supervisor.

Configure supervisord

Configuring Supervisor couldn’t be more simple. Just point it to the lemur executable in your virtualenv’s bin/
folder and you’re good to go.

[program:lemur-web]
directory=/www/lemur/
command=/www/lemur/bin/lemur start
autostart=true
autorestart=true
redirect_stderr=true
stdout_logfile syslog
stderr_logfile syslog

1.1. Quickstart 7

http://supervisord.org/

Lemur Documentation, Release 0.5.0

See Using Supervisor for more details on using Supervisor.

Syncing

Lemur uses periodic sync tasks to make sure it is up-to-date with its environment. Things change outside of Lemur
we do our best to reconcile those changes. The recommended method is to use CRON:

$ crontab -e

*/15 * * * * lemur sync -s all
0 22 * * * lemur check_revoked
0 22 * * * lemur notify

Additional Utilities

If you’re familiar with Python you’ll quickly find yourself at home, and even more so if you’ve used Flask. The lemur
command is just a simple wrapper around Flask’s manage.py , which means you get all of the power and flexibility
that goes with it.

Some of the features which you’ll likely find useful are listed below.

lock

Encrypts sensitive key material - this is most useful for storing encrypted secrets in source code.

unlock

Decrypts sensitive key material - used to decrypt the secrets stored in source during deployment.

What’s Next?

Get familiar with how Lemur works by reviewing the User Guide. When you’re ready see Production for more details
on how to configure Lemur for production.

The above just gets you going, but for production there are several different security considerations to take into account.
Remember, Lemur is handling sensitive data and security is imperative.

Production

There are several steps needed to make Lemur production ready. Here we focus on making Lemur more reliable and
secure.

Basics

Because of the sensitivity of the information stored and maintained by Lemur it is important that you follow standard
host hardening practices:

• Run Lemur with a limited user

• Disabled any unneeded services

8 Chapter 1. Installation

Lemur Documentation, Release 0.5.0

• Enable remote logging

• Restrict access to host

Credential Management

Lemur often contains credentials such as mutual TLS keys or API tokens that are used to communicate with third
party resources and for encrypting stored secrets. Lemur comes with the ability to automatically encrypt these keys
such that your keys not be in clear text.

The keys are located within lemur/keys and broken down by environment.

To utilize this ability use the following commands:

lemur lock

and

lemur unlock

If you choose to use this feature ensure that the keys are decrypted before Lemur starts as it will have trouble commu-
nicating with the database otherwise.

Entropy

Lemur generates private keys for the certificates it creates. This means that it is vitally important that Lemur has enough
entropy to draw from. To generate private keys Lemur uses the python library Cryptography. In turn Cryptography
uses OpenSSL bindings to generate keys just like you might from the OpenSSL command line. OpenSSL draws
its initial entropy from system during startup and uses PRNGs to generate a stream of random bytes (as output by
/dev/urandom) whenever it needs to do a cryptographic operation.

What does all this mean? Well in order for the keys that Lemur generates to be strong, the system needs to interact
with the outside world. This is typically accomplished through the systems hardware (thermal, sound, video user-input,
etc.) since the physical world is much more “random” than the computer world.

If you are running Lemur on its own server with its own hardware “bare metal” then the entropy of the system is
typically “good enough” for generating keys. If however you are using a VM on shared hardware there is a potential
that your initial seed data (data that was initially fed to the PRNG) is not very good. What’s more, VMs have been
known to be unable to inject more entropy into the system once it has been started. This is because there is typically
very little interaction with the server once it has been started.

The amount of effort you wish to expend ensuring that Lemur has good entropy to draw from is up to your specific
risk tolerance and how Lemur is configured.

If you wish to generate more entropy for your system we would suggest you take a look at the following resources:

• WES-entropy-client

• haveged

For additional information about OpenSSL entropy issues:

• Managing and Understanding Entropy Usage

TLS/SSL

Nginx

Nginx is a very popular choice to serve a Python project:

1.2. Production 9

https://cryptography.io
https://github.com/WhitewoodCrypto/WES-entropy-client
http://www.issihosts.com/haveged/
https://www.blackhat.com/docs/us-15/materials/us-15-Potter-Understanding-And-Managing-Entropy-Usage.pdf

Lemur Documentation, Release 0.5.0

• It’s fast.

• It’s lightweight.

• Configuration files are simple.

Nginx doesn’t run any Python process, it only serves requests from outside to the Python server.

Therefore, there are two steps:

• Run the Python process.

• Run Nginx.

You will benefit from having:

• the possibility to have several projects listening to the port 80;

• your web site processes won’t run with admin rights, even if –user doesn’t work on your OS;

• the ability to manage a Python process without touching Nginx or the other processes. It’s very handy for
updates.

You must create a Nginx configuration file for Lemur. On GNU/Linux, they usually go into /etc/nginx/conf.d/. Name
it lemur.conf.

proxy_pass just passes the external request to the Python process. The port must match the one used by the Lemur
process of course.

You can make some adjustments to get a better user experience:

server_tokens off;
add_header X-Frame-Options DENY;
add_header X-Content-Type-Options nosniff;
add_header X-XSS-Protection "1; mode=block";

server {
listen 80;
return 301 https://$host$request_uri;

}

server {
listen 443;
access_log /var/log/nginx/log/lemur.access.log;
error_log /var/log/nginx/log/lemur.error.log;

location /api {
proxy_pass http://127.0.0.1:8000;
proxy_next_upstream error timeout invalid_header http_500 http_502 http_503

→˓http_504;
proxy_redirect off;
proxy_buffering off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}

location / {
root /path/to/lemur/static/dist;
include mime.types;
index index.html;

}

10 Chapter 1. Installation

Lemur Documentation, Release 0.5.0

}

This makes Nginx serve the favicon and static files which it is much better at than python.

It is highly recommended that you deploy TLS when deploying Lemur. This may be obvious given Lemur’s purpose
but the sensitive nature of Lemur and what it controls makes this essential. This is a sample config for Lemur that also
terminates TLS:

server_tokens off;
add_header X-Frame-Options DENY;
add_header X-Content-Type-Options nosniff;
add_header X-XSS-Protection "1; mode=block";

server {
listen 80;
return 301 https://$host$request_uri;

}

server {
listen 443;
access_log /var/log/nginx/log/lemur.access.log;
error_log /var/log/nginx/log/lemur.error.log;

certs sent to the client in SERVER HELLO are concatenated in ssl_certificate
ssl_certificate /path/to/signed_cert_plus_intermediates;
ssl_certificate_key /path/to/private_key;
ssl_session_timeout 1d;
ssl_session_cache shared:SSL:50m;

Diffie-Hellman parameter for DHE ciphersuites, recommended 2048 bits
ssl_dhparam /path/to/dhparam.pem;

modern configuration. tweak to your needs.
ssl_protocols TLSv1.1 TLSv1.2;
ssl_ciphers 'ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-

→˓AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:DHE-DSS-
→˓AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:
→˓ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-
→˓AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-
→˓RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-
→˓RSA-AES256-SHA:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!3DES:!MD5:!PSK';

ssl_prefer_server_ciphers on;

HSTS (ngx_http_headers_module is required) (15768000 seconds = 6 months)
add_header Strict-Transport-Security max-age=15768000;

OCSP Stapling ---
fetch OCSP records from URL in ssl_certificate and cache them
ssl_stapling on;
ssl_stapling_verify on;

verify chain of trust of OCSP response using Root CA and Intermediate certs
ssl_trusted_certificate /path/to/root_CA_cert_plus_intermediates;

resolver <IP DNS resolver>;

location /api {

1.2. Production 11

Lemur Documentation, Release 0.5.0

proxy_pass http://127.0.0.1:8000;
proxy_next_upstream error timeout invalid_header http_500 http_502 http_503

→˓http_504;
proxy_redirect off;
proxy_buffering off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

}

location / {
root /path/to/lemur/static/dist;
include mime.types;
index index.html;

}

}

Note: Some paths will have to be adjusted based on where you have choose to install Lemur.

Apache

An example apache config:

<VirtualHost *:443>
...
SSLEngine on
SSLCertificateFile /path/to/signed_certificate
SSLCertificateChainFile /path/to/intermediate_certificate
SSLCertificateKeyFile /path/to/private/key
SSLCACertificateFile /path/to/all_ca_certs

intermediate configuration, tweak to your needs
SSLProtocol all -SSLv2 -SSLv3
SSLCipherSuite ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-SHA256:

→˓ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:
→˓DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-AES128-SHA256:ECDHE-ECDSA-AES128-
→˓SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-
→˓ECDSA-AES256-SHA384:ECDHE-RSA-AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-
→˓SHA256:DHE-RSA-AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-
→˓AES256-SHA:DHE-RSA-AES256-SHA:AES128-GCM-SHA256:AES256-GCM-SHA384:AES128-SHA256:
→˓AES256-SHA256:AES128-SHA:AES256-SHA:AES:CAMELLIA:DES-CBC3-SHA:!aNULL:!eNULL:!EXPORT:
→˓!DES:!RC4:!MD5:!PSK:!aECDH:!EDH-DSS-DES-CBC3-SHA:!EDH-RSA-DES-CBC3-SHA:!KRB5-DES-
→˓CBC3-SHA

SSLHonorCipherOrder on

HSTS (mod_headers is required) (15768000 seconds = 6 months)
Header always set Strict-Transport-Security "max-age=15768000"
...

</VirtualHost>

Also included in the configurations above are several best practices when it comes to deploying TLS. Things like
enabling HSTS, disabling vulnerable ciphers are all good ideas when it comes to deploying Lemur into a production
environment.

12 Chapter 1. Installation

Lemur Documentation, Release 0.5.0

Note: This is a rather incomplete apache config for running Lemur (needs mod_wsgi etc.), if you have a working
apache config please let us know!

See also:

Mozilla SSL Configuration Generator

Supervisor

Supervisor is a very nice way to manage you Python processes. We won’t cover the setup (which is just apt-get install
supervisor or pip install supervisor most of the time), but here is a quick overview on how to use it.

Create a configuration file named supervisor.ini:

[unix_http_server]
file=/tmp/supervisor.sock

[supervisorctl]
serverurl=unix:///tmp/supervisor.sock

[rpcinterface:supervisor]
supervisor.rpcinterface_factory=supervisor.rpcinterface:make_main_rpcinterface

[supervisord]
logfile=/tmp/lemur.log
logfile_maxbytes=50MB
logfile_backups=2
loglevel=trace
pidfile=/tmp/supervisord.pid
nodaemon=false
minfds=1024
minprocs=200

[program:lemur]
command=python /path/to/lemur/manage.py manage.py start

directory=/path/to/lemur/
environment=PYTHONPATH='/path/to/lemur/',LEMUR_CONF='/home/lemur/.lemur/lemur.conf.py'
user=lemur
autostart=true
autorestart=true

The 4 first entries are just boiler plate to get you started, you can copy them verbatim.

The last one defines one (you can have many) process supervisor should manage.

It means it will run the command:

python manage.py start

In the directory, with the environment and the user you defined.

This command will be ran as a daemon, in the background.

autostart and autorestart just make it fire and forget: the site will always be running, even it crashes temporarily or if
you restart the machine.

The first time you run supervisor, pass it the configuration file:

1.2. Production 13

https://mozilla.github.io/server-side-tls/ssl-config-generator/

Lemur Documentation, Release 0.5.0

supervisord -c /path/to/supervisor.ini

Then you can manage the process by running:

supervisorctl -c /path/to/supervisor.ini

It will start a shell from which you can start/stop/restart the service.

You can read all errors that might occur from /tmp/lemur.log.

Periodic Tasks

Lemur contains a few tasks that are run and scheduled basis, currently the recommend way to run these tasks is to
create a cron job that runs the commands.

There are currently three commands that could/should be run on a periodic basis:

• notify

• check_revoked

• sync

How often you run these commands is largely up to the user. notify and check_revoked are typically run at least once
a day. sync is typically run every 15 minutes.

Example cron entries:

0 22 * * * lemuruser export LEMUR_CONF=/Users/me/.lemur/lemur.conf.py; /www/lemur/bin/
→˓lemur notify

*/15 * * * * lemuruser export LEMUR_CONF=/Users/me/.lemur/lemur.conf.py; /www/lemur/
→˓bin/lemur sync -s all
0 22 * * * lemuruser export LEMUR_CONF=/Users/me/.lemur/lemur.conf.py; /www/lemur/bin/
→˓lemur check_revoked

14 Chapter 1. Installation

CHAPTER 2

User Guide

User Guide

These guides are quick tutorials on how to perform basic tasks in Lemur.

Create a New Authority

Before Lemur can issue certificates you must configure the authority you wish use. Lemur itself does not issue
certificates, it relies on external CAs and the plugins associated with those CAs to create the certificate that Lemur can
then manage.

Fig. 2.1: In the authority table select “Create”

Create a New Certificate

Import an Existing Certificate

Create a New User

Create a New Role

15

Lemur Documentation, Release 0.5.0

Fig. 2.2: Enter an authority name and short description about the authority. Enter an owner, and certificate common
name. Depending on the authority and the authority/issuer plugin these values may or may not be used.

16 Chapter 2. User Guide

Lemur Documentation, Release 0.5.0

Fig. 2.3: Again how many of these values get used largely depends on the underlying plugin. It is important to make
sure you select the right plugin that you wish to use.

Fig. 2.4: In the certificate table select “Create”

2.1. User Guide 17

Lemur Documentation, Release 0.5.0

Fig. 2.5: Enter an owner, short description and the authority you wish to issue this certificate. Enter a common name
into the certificate, if no validity range is selected two years is the default.
You can add notification options and upload the created certificate to a destination, both of these are editable features and can be

changed after the certificate has been created.

18 Chapter 2. User Guide

Lemur Documentation, Release 0.5.0

Fig. 2.6: These options are typically for advanced users, the one exception is the Subject Alternate Names or SAN. For
certificates that need to include more than one domains, the first domain is the Common Name and all other domains
are added here as DNSName entries.

2.1. User Guide 19

Lemur Documentation, Release 0.5.0

Fig. 2.7: Enter an owner, short description and public certificate. If there are intermediates and private keys Lemur
will track them just as it does if the certificate were created through Lemur. Lemur generates a certificate name but
you can override that by passing a value to the Custom Name field.
You can add notification options and upload the created certificate to a destination, both of these are editable features and can be

changed after the certificate has been created.

20 Chapter 2. User Guide

Lemur Documentation, Release 0.5.0

Fig. 2.8: From the settings dropdown select “Users”

Fig. 2.9: In the user table select “Create”

2.1. User Guide 21

Lemur Documentation, Release 0.5.0

Fig. 2.10: Enter the username, email and password for the user. You can also assign any roles that the user will need
when they login. While there is no deletion (we want to track creators forever) you can mark a user as ‘Inactive’ that
will not allow them to login to Lemur.

Fig. 2.11: From the settings dropdown select “Roles”

22 Chapter 2. User Guide

Lemur Documentation, Release 0.5.0

Fig. 2.12: In the role table select “Create”

Fig. 2.13: Enter a role name and short description about the role. You can optionally store a user/password on the
role. This is useful if your authority require specific roles. You can then accurately map those roles onto Lemur users.
Also optional you can assign users to your new role.

2.1. User Guide 23

Lemur Documentation, Release 0.5.0

24 Chapter 2. User Guide

CHAPTER 3

Administration

Configuration

Warning: There are many secrets that Lemur uses that must be protected. All of these options are set via the
Lemur configuration file. It is highly advised that you do not store your secrets in this file! Lemur provides
functions that allow you to encrypt files at rest and decrypt them when it’s time for deployment. See Credential
Management for more information.

Basic Configuration

LOG_LEVEL

LOG_LEVEL = "DEBUG"

LOG_FILE

LOG_FILE = "/logs/lemur/lemur-test.log"

debug
Sets the flask debug flag to true (if supported by the webserver)

debug = False

Warning: This should never be used in a production environment as it exposes Lemur to remote code
execution through the debug console.

CORS
Allows for cross domain requests, this is most commonly used for development but could be use in production
if you decided to host the webUI on a different domain than the server.

Use this cautiously, if you’re not sure. Set it to False

CORS = False

SQLALCHEMY_DATABASE_URI

25

Lemur Documentation, Release 0.5.0

If you have ever used sqlalchemy before this is the standard connection string used. Lemur uses a
postgres database and the connection string would look something like:

SQLALCHEMY_DATABASE_URI = 'postgresql://<user>:<password>@<hostname>:5432/lemur'

LEMUR_ALLOW_WEEKEND_EXPIRATION

Specifies whether to allow certificates created by Lemur to expire on weekends. Default is True.

LEMUR_RESTRICTED_DOMAINS

This allows the administrator to mark a subset of domains or domains matching a particular regex as
restricted. This means that only an administrator is allows to issue the domains in question.

LEMUR_TOKEN_SECRET

The TOKEN_SECRET is the secret used to create JWT tokens that are given out to users. This
should be securely generated and kept private.

LEMUR_TOKEN_SECRET = 'supersecret'

An example of how you might generate a random string:

>>> import random
>>> secret_key = ''.join(random.choice(string.ascii_uppercase) for x in range(6))
>>> secret_key = secret_key + ''.join(random.choice("~!@#$%^&*()_+") for x in
→˓range(6))
>>> secret_key = secret_key + ''.join(random.choice(string.ascii_lowercase) for x
→˓in range(6))
>>> secret_key = secret_key + ''.join(random.choice(string.digits) for x in
→˓range(6))

LEMUR_ENCRYPTION_KEYS

The LEMUR_ENCRYPTION_KEYS is used to encrypt data at rest within Lemur’s database. With-
out a key Lemur will refuse to start. Multiple keys can be provided to facilitate key rotation. The first
key in the list is used for encryption and all keys are tried for decryption until one works. Each key
must be 32 URL safe base-64 encoded bytes.

Running lemur create_config will securely generate a key for your configuration file. If you would
like to generate your own, we recommend the following method:

>>> import os
>>> import base64
>>> base64.urlsafe_b64encode(os.urandom(32))

LEMUR_ENCRYPTION_KEYS = ['1YeftooSbxCiX2zo8m1lXtpvQjy27smZcUUaGmffhMY=',
→˓'LAfQt6yrkLqOK5lwpvQcT4jf2zdeTQJV1uYeh9coT5s=']

Certificate Default Options

Lemur allows you to fine tune your certificates to your organization. The following defaults are presented in the UI
and are used when Lemur creates the CSR for your certificates.

LEMUR_DEFAULT_COUNTRY

26 Chapter 3. Administration

Lemur Documentation, Release 0.5.0

LEMUR_DEFAULT_COUNTRY = "US"

LEMUR_DEFAULT_STATE

LEMUR_DEFAULT_STATE = "California"

LEMUR_DEFAULT_LOCATION

LEMUR_DEFAULT_LOCATION = "Los Gatos"

LEMUR_DEFAULT_ORGANIZATION

LEMUR_DEFAULT_ORGANIZATION = "Netflix"

LEMUR_DEFAULT_ORGANIZATIONAL_UNIT

LEMUR_DEFAULT_ORGANIZATIONAL_UNIT = "Operations"

LEMUR_DEFAULT_ISSUER_PLUGIN

LEMUR_DEFAULT_ISSUER_PLUGIN = "verisign-issuer"

LEMUR_DEFAULT_AUTHORITY

LEMUR_DEFAULT_AUTHORITY = "verisign"

Notification Options

Lemur currently has very basic support for notifications. Currently only expiration notifications are supported. Actual
notification is handled by the notification plugins that you have configured. Lemur ships with the ‘Email’ notification
that allows expiration emails to be sent to subscribers.

Templates for expiration emails are located under lemur/plugins/lemur_email/templates and can be modified for
your needs. Notifications are sent to the certificate creator, owner and security team as specified by the
LEMUR_SECURITY_TEAM_EMAIL configuration parameter.

Certificates marked as inactive will not be notified of upcoming expiration. This enables a user to essentially
silence the expiration. If a certificate is active and is expiring the above will be notified according to the
LEMUR_DEFAULT_EXPIRATION_NOTIFICATION_INTERVALS or 30, 15, 2 days before expiration if no intervals
are set.

Lemur supports sending certification expiration notifications through SES and SMTP.

LEMUR_EMAIL_SENDER
Specifies which service will be delivering notification emails. Valid values are SMTP or SES

Note: If using SMTP as your provider you will need to define additional configuration options as specified by
Flask-Mail. See: Flask-Mail

3.1. Configuration 27

https://pythonhosted.org/Flask-Mail

Lemur Documentation, Release 0.5.0

If you are using SES the email specified by the LEMUR_MAIL configuration will need to be verified by AWS
before you can send any mail. See: Verifying Email Address in Amazon SES

LEMUR_MAIL

Lemur sender’s email

LEMUR_MAIL = 'lemur.example.com'

LEMUR_SECURITY_TEAM_EMAIL

This is an email or list of emails that should be notified when a certificate is expiring. It is also the
contact email address for any discovered certificate.

LEMUR_SECURITY_TEAM_EMAIL = ['security@example.com']

LEMUR_DEFAULT_EXPIRATION_NOTIFICATION_INTERVALS

Lemur notification intervals

LEMUR_DEFAULT_EXPIRATION_NOTIFICATION_INTERVALS = [30, 15, 2]

Authentication Options

Lemur currently supports Basic Authentication, Ping OAuth2, and Google out of the box. Additional flows can be
added relatively easily. If you are not using an authentication provider you do not need to configure any of these
options.

For more information about how to use social logins, see: Satellizer

ACTIVE_PROVIDERS

ACTIVE_PROVIDERS = ["ping", "google", "oauth2"]

PING_SECRET

PING_SECRET = 'somethingsecret'

PING_ACCESS_TOKEN_URL

PING_ACCESS_TOKEN_URL = "https://<yourpingserver>/as/token.oauth2"

PING_USER_API_URL

PING_USER_API_URL = "https://<yourpingserver>/idp/userinfo.openid"

PING_JWKS_URL

PING_JWKS_URL = "https://<yourpingserver>/pf/JWKS"

PING_NAME

PING_NAME = "Example Oauth2 Provider"

PING_CLIENT_ID

28 Chapter 3. Administration

http://docs.aws.amazon.com/ses/latest/DeveloperGuide/verify-email-addresses.html
https://github.com/sahat/satellizer

Lemur Documentation, Release 0.5.0

PING_CLIENT_ID = "client-id"

PING_REDIRECT_URI

PING_REDIRECT_URI = "https://<yourlemurserver>/api/1/auth/ping"

PING_AUTH_ENDPOINT

PING_AUTH_ENDPOINT = "https://<yourpingserver>/oauth2/authorize"

OAUTH2_SECRET

OAUTH2_SECRET = 'somethingsecret'

OAUTH2_ACCESS_TOKEN_URL

OAUTH2_ACCESS_TOKEN_URL = "https://<youroauthserver> /oauth2/v1/authorize"

OAUTH2_USER_API_URL

OAUTH2_USER_API_URL = "https://<youroauthserver>/oauth2/v1/userinfo"

OAUTH2_JWKS_URL

OAUTH2_JWKS_URL = "https://<youroauthserver>/oauth2/v1/keys"

OAUTH2_NAME

OAUTH2_NAME = "Example Oauth2 Provider"

OAUTH2_CLIENT_ID

OAUTH2_CLIENT_ID = "client-id"

OAUTH2_REDIRECT_URI

OAUTH2_REDIRECT_URI = "https://<yourlemurserver>/api/1/auth/oauth2"

OAUTH2_AUTH_ENDPOINT

OAUTH2_AUTH_ENDPOINT = "https://<youroauthserver>/oauth2/v1/authorize"

GOOGLE_CLIENT_ID

GOOGLE_CLIENT_ID = "client-id"

GOOGLE_SECRET

GOOGLE_SECRET = "somethingsecret"

Plugin Specific Options

3.1. Configuration 29

Lemur Documentation, Release 0.5.0

Verisign Issuer Plugin

Authorities will each have their own configuration options. There is currently just one plugin bundled with Lemur,
Verisign/Symantec. Additional plugins may define additional options. Refer to the plugin’s own documentation for
those plugins.

VERISIGN_URL

This is the url for the Verisign API

VERISIGN_PEM_PATH

This is the path to the mutual TLS certificate used for communicating with Verisign

VERISIGN_FIRST_NAME

This is the first name to be used when requesting the certificate

VERISIGN_LAST_NAME

This is the last name to be used when requesting the certificate

VERISIGN_EMAIL

This is the email to be used when requesting the certificate

VERISIGN_INTERMEDIATE

This is the intermediate to be used for your CA chain

VERISIGN_ROOT

This is the root to be used for your CA chain

Digicert Issuer Plugin

The following configuration properties are required to use the Digicert issuer plugin.

DIGICERT_URL

This is the url for the Digicert API

DIGICERT_API_KEY

This is the Digicert API key

DIGICERT_ORG_ID

This is the Digicert organization ID tied to your API key

DIGICERT_INTERMEDIATE

This is the intermediate to be used for your CA chain

DIGICERT_ROOT

This is the root to be used for your CA chain

DIGICERT_DEFAULT_VALIDITY

This is the default validity (in years), if no end date is specified. (Default: 1)

30 Chapter 3. Administration

Lemur Documentation, Release 0.5.0

CFSSL Issuer Plugin

The following configuration properties are required to use the CFSSL issuer plugin.

CFSSL_URL

This is the URL for the CFSSL API

CFSSL_ROOT

This is the root to be used for your CA chain

CFSSL_INTERMEDIATE

This is the intermediate to be used for your CA chain

AWS Source/Destination Plugin

In order for Lemur to manage its own account and other accounts we must ensure it has the correct AWS permissions.

Note: AWS usage is completely optional. Lemur can upload, find and manage TLS certificates in AWS. But is not
required to do so.

Lemur’s AWS plugin uses boto heavily to talk to all the AWS resources it manages. By default it uses the on-instance
credentials to make the necessary calls.

In order to limit the permissions, we will create two new IAM roles for Lemur. You can name them whatever you
would like but for example sake we will be calling them LemurInstanceProfile and Lemur.

Lemur uses to STS to talk to different accounts. For managing one account this isn’t necessary but we will still use it
so that we can easily add new accounts.

LemurInstanceProfile is the IAM role you will launch your instance with. It actually has almost no rights. In fact it
should really only be able to use STS to assume role to the Lemur role.

Here are example policies for the LemurInstanceProfile:

SES-SendEmail

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",
"Action": [

"ses:SendEmail"
],
"Resource": "*"

}
]

}

STS-AssumeRole

{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

3.1. Configuration 31

Lemur Documentation, Release 0.5.0

"Action":
"sts:AssumeRole",

"Resource": "*"
}

]
}

Next we will create the Lemur IAM role.

Note: The default IAM role that Lemur assumes into is called Lemur, if you need to change this ensure you set
LEMUR_INSTANCE_PROFILE to your role name in the configuration.

Here is an example policy for Lemur:

IAM-ServerCertificate

{
"Statement": [

{
"Action": [

"iam:ListServerCertificates",
"iam:UpdateServerCertificate",
"iam:GetServerCertificate",
"iam:UploadServerCertificate"

],
"Resource": [

"*"
],
"Effect": "Allow",
"Sid": "Stmt1404836868000"

}
]

}

{
"Statement": [

{
"Action": [

"elasticloadbalancing:DescribeInstanceHealth",
"elasticloadbalancing:DescribeLoadBalancerAttributes",
"elasticloadbalancing:DescribeLoadBalancerPolicyTypes",
"elasticloadbalancing:DescribeLoadBalancerPolicies",
"elasticloadbalancing:DescribeLoadBalancers",
"elasticloadbalancing:DeleteLoadBalancerListeners",
"elasticloadbalancing:CreateLoadBalancerListeners"

],
"Resource": [

"*"
],
"Effect": "Allow",
"Sid": "Stmt1404841912000"

}
]

}

Once we have setup our accounts we need to ensure that we create a trust relationship so that LemurInstanceProfile

32 Chapter 3. Administration

Lemur Documentation, Release 0.5.0

can assume the Lemur role.

In the AWS console select the Lemur IAM role and select the Trust Relationships tab and click Edit Trust Relationship

Below is an example policy:

{
"Version": "2008-10-17",
"Statement": [
{

"Sid": "",
"Effect": "Allow",
"Principal": {

"AWS": [
"arn:aws:iam::<awsaccountnumber>:role/LemurInstanceProfile",

]
},
"Action": "sts:AssumeRole"

}
]

}

To add another account we go to the new account and create a new Lemur IAM role with the same policy as above.

Then we would go to the account that Lemur is running is and edit the trust relationship policy.

An example policy:

{
"Version": "2008-10-17",
"Statement": [
{

"Sid": "",
"Effect": "Allow",
"Principal": {

"AWS": [
"arn:aws:iam::<awsaccountnumber>:role/LemurInstanceProfile",
"arn:aws:iam::<awsaccountnumber1>:role/LemurInstanceProfile",

]
},
"Action": "sts:AssumeRole"

}
]

}

Lemur has built in support for sending it’s certificate notifications via Amazon’s simple email service (SES). To force
Lemur to use SES ensure you are the running as the IAM role defined above and that you have followed the steps
outlined in Amazon’s documentation Setting up Amazon SES

The configuration:

LEMUR_MAIL = 'lemur.example.com'

Will be the sender of all notifications, so ensure that it is verified with AWS.

SES if the default notification gateway and will be used unless SMTP settings are configured in the application con-
figuration settings.

3.1. Configuration 33

http://docs.aws.amazon.com/ses/latest/DeveloperGuide/setting-up-ses.html

Lemur Documentation, Release 0.5.0

Command Line Interface

Lemur installs a command line script under the name lemur . This will allow you to perform most required operations
that are unachievable within the web UI.

If you’re using a non-standard configuration location, you’ll need to prefix every command with –config (excluding
create_config, which is a special case). For example:

lemur --config=/etc/lemur.conf.py help

For a list of commands, you can also use lemur help , or lemur [command] --help for help on a specific
command.

Note: The script is powered by a library called Flask-Script

Builtin Commands

All commands default to ~/.lemur/lemur.conf.py if a configuration is not specified.

create_config
Creates a default configuration file for Lemur.

Path defaults to ~/.lemur/lemur.config.py

lemur create_config .

Note: This command is a special case and does not depend on the configuration file being set.

init
Initializes the configuration file for Lemur.

lemur -c /etc/lemur.conf.py init

start
Starts a Lemur service. You can also pass any flag that Gunicorn uses to specify the webserver configuration.

lemur start -w 6 -b 127.0.0.1:8080

db upgrade
Performs any needed database migrations.

lemur db upgrade

check_revoked
Traverses every certificate that Lemur is aware of and attempts to understand its validity. It utilizes both OCSP
and CRL. If Lemur is unable to come to a conclusion about a certificates validity its status is marked ‘unknown’.

sync
Sync attempts to discover certificates in the environment that were not created by Lemur. If you wish to only
sync a few sources you can pass a comma delimited list of sources to sync.

lemur sync -s source1,source2

34 Chapter 3. Administration

https://github.com/smurfix/flask-script

Lemur Documentation, Release 0.5.0

Additionally you can also list the available sources that Lemur can sync.

lemur sync

notify
Will traverse all current notifications and see if any of them need to be triggered.

lemur notify

Sub-commands

Lemur includes several sub-commands for interacting with Lemur such as creating new users, creating new roles and
even issuing certificates.

The best way to discover these commands is by using the built in help pages

lemur --help

and to get help on sub-commands

lemur certificates --help

Upgrading Lemur

To upgrade Lemur to the newest release you will need to ensure you have the latest code and have run any needed
database migrations.

To get the latest code from github run

cd <lemur-source-directory>
git pull -t <version>
python setup.py develop

Note: It’s important to grab the latest release by specifying the release tag. This tags denote stable versions of Lemur.
If you want to try the bleeding edge version of Lemur you can by using the master branch.

After you have the latest version of the Lemur code base you must run any needed database migrations. To run
migrations

cd <lemur-source-directory>/lemur
lemur db upgrade

This will ensure that any needed tables or columns are created or destroyed.

Note: Internally, this uses Alembic to manage database migrations.

Note: By default Alembic looks for the migrations folder in the current working directory.The migrations folder is
located under <LEMUR_HOME>/lemur/migrations if you are running the lemur command from any location besides
<LEMUR_HOME>/lemur you will need to pass the -d flag to specify the absolute file path to the migrations folder.

3.3. Upgrading Lemur 35

https://alembic.readthedocs.org/en/latest/

Lemur Documentation, Release 0.5.0

Plugins

There are several interfaces currently available to extend Lemur. These are a work in progress and the API is not
frozen.

Lemur includes several plugins by default. Including extensive support for AWS, VeriSign/Symantec.

Verisign/Symantec

Authors Kevin Glisson <kglisson@netflix.com>

Type Issuer

Description Basic support for the VICE 2.0 API

Cryptography

Authors Kevin Glisson <kglisson@netflix.com>, Mikhail Khodorovskiy
<mikhail.khodorovskiy@jivesoftware.com>

Type Issuer

Description Toy certificate authority that creates self-signed certificate authorities. Allows for the cre-
ation of arbitrary authorities and end-entity certificates. This is not recommended for production
use.

Acme

Authors Kevin Glisson <kglisson@netflix.com>, Mikhail Khodorovskiy
<mikhail.khodorovskiy@jivesoftware.com>

Type Issuer

Description Adds support for the ACME protocol (including LetsEncrypt) with domain validation being
handled Route53.

Atlas

Authors Kevin Glisson <kglisson@netflix.com>

Type Metric

Description Adds basic support for the Atlas telemetry system.

Email

Authors Kevin Glisson <kglisson@netflix.com>

Type Notification

Description Adds support for basic email notifications via SES.

36 Chapter 3. Administration

mailto:kglisson@netflix.com
mailto:kglisson@netflix.com
mailto:mikhail.khodorovskiy@jivesoftware.com
mailto:kglisson@netflix.com
mailto:mikhail.khodorovskiy@jivesoftware.com
mailto:kglisson@netflix.com
https://github.com/Netflix/atlas/wiki
mailto:kglisson@netflix.com

Lemur Documentation, Release 0.5.0

Slack

Authors Harm Weites <harm@weites.com>

Type Notification

Description Adds support for slack notifications.

AWS

Authors Kevin Glisson <kglisson@netflix.com>

Type Source

Description Uses AWS IAM as a source of certificates to manage. Supports a multi-account deployment.

AWS

Authors Kevin Glisson <kglisson@netflix.com>

Type Destination

Description Uses AWS IAM as a destination for Lemur generated certificates. Support a multi-account
deployment.

Kubernetes

Authors Mikhail Khodorovskiy <mikhail.khodorovskiy@jivesoftware.com>

Type Destination

Description Allows Lemur to upload generated certificates to the Kubernetes certificate store.

Java

Authors Kevin Glisson <kglisson@netflix.com>

Type Export

Description Generates java compatible .jks keystores and truststores from Lemur managed certificates.

Openssl

Authors Kevin Glisson <kglisson@netflix.com>

Type Export

Description Leverages Openssl to support additional export formats (pkcs12)

CFSSL

Authors Charles Hendrie <chad.hendrie@thomsonreuters.com>

Type Issuer

Description Basic support for generating certificates from the private certificate authority CFSSL

3.4. Plugins 37

mailto:harm@weites.com
mailto:kglisson@netflix.com
mailto:kglisson@netflix.com
mailto:mikhail.khodorovskiy@jivesoftware.com
mailto:kglisson@netflix.com
mailto:kglisson@netflix.com
mailto:chad.hendrie@thomsonreuters.com

Lemur Documentation, Release 0.5.0

3rd Party Plugins

The following plugins are available and maintained by members of the Lemur community:

Digicert

Authors Chris Dorros

Type Issuer

Description Adds support for basic Digicert

Links https://github.com/opendns/lemur-digicert

Have an extension that should be listed here? Submit a pull request and we’ll get it added.

Want to create your own extension? See Structure to get started.

Identity and Access Management

Lemur uses a Role Based Access Control (RBAC) mechanism to control which users have access to which resources.
When a user is first created in Lemur they can be assigned one or more roles. These roles are typically dynamically
created depending on an external identity provider (Google, LDAP, etc.), or are hardcoded within Lemur and associated
with special meaning.

Within Lemur there are three main permissions: AdminPermission, CreatorPermission, OwnerPermission. Sub-
permissions such as ViewPrivateKeyPermission are compositions of these three main Permissions.

Lets take a look at how these permissions are used:

Each Authority has a set of roles associated with it. If a user is also associated with the same roles that the Authority is
associated with, Lemur allows that user to user/view/update that Authority.

This RBAC is also used when determining which users can access which certificate private key. Lemur’s current
permission structure is setup such that if the user is a Creator or Owner of a given certificate they are allow to view
that private key. Owners can also be a role name, such that any user with the same role as owner will be allowed to
view the private key information.

These permissions are applied to the user upon login and refreshed on every request.

See also:

Flask-Principal

38 Chapter 3. Administration

https://github.com/opendns/lemur-digicert
https://github.com/netflix/lemur
https://pythonhosted.org/Flask-Principal

CHAPTER 4

Developers

Contributing

Want to contribute back to Lemur? This page describes the general development flow, our philosophy, the test suite,
and issue tracking.

Documentation

If you’re looking to help document Lemur, you can get set up with Sphinx, our documentation tool, but first you will
want to make sure you have a few things on your local system:

• python-dev (if you’re on OS X, you already have this)

• pip

• virtualenvwrapper

Once you’ve got all that, the rest is simple:

If you have a fork, you'll want to clone it instead
git clone git://github.com/netflix/lemur.git

Create a python virtualenv
mkvirtualenv lemur

Make the magic happen
make dev-docs

Running make dev-docs will install the basic requirements to get Sphinx running.

Building Documentation

Inside the docs directory, you can run make to build the documentation. See make help for available options
and the Sphinx Documentation for more information.

Developing Against HEAD

We try to make it easy to get up and running in a development environment using a git checkout of Lemur. You’ll want
to make sure you have a few things on your local system first:

39

http://sphinx-doc.org/contents.html

Lemur Documentation, Release 0.5.0

• python-dev (if you’re on OS X, you already have this)

• pip

• virtualenv (ideally virtualenvwrapper)

• node.js (for npm and building css/javascript)

• (Optional) PostgreSQL

Once you’ve got all that, the rest is simple:

If you have a fork, you'll want to clone it instead
git clone git://github.com/lemur/lemur.git

Create a python virtualenv
mkvirtualenv lemur

Make the magic happen
make

Running make will do several things, including:

• Setting up any submodules (including Bootstrap)

• Installing Python requirements

• Installing NPM requirements

Note: You will want to store your virtualenv out of the lemur directory you cloned above, otherwise make will
fail.

Create a default Lemur configuration just as if this were a production instance:

lemur init

You’ll likely want to make some changes to the default configuration (we recommend developing against Postgres, for
example). Once done, migrate your database using the following command:

lemur upgrade

Note: The upgrade shortcut is simply a shortcut to Alembic’s upgrade command.

Coding Standards

Lemur follows the guidelines laid out in pep8 with a little bit of flexibility on things like line length. We always give
way for the Zen of Python. We also use strict mode for JavaScript, enforced by jshint.

You can run all linters with make lint , or respectively lint-python or lint-js .

Spacing

Python: 4 Spaces

JavaScript: 2 Spaces

40 Chapter 4. Developers

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0020/

Lemur Documentation, Release 0.5.0

CSS: 2 Spaces

HTML: 2 Spaces

Git hooks

To help developers maintain the above standards, Lemur includes a configuration file for Yelp’s pre-commit. This is
an optional dependency and is not required in order to contribute to Lemur.

Running the Test Suite

The test suite consists of multiple parts, testing both the Python and JavaScript components in Lemur. If you’ve setup
your environment correctly, you can run the entire suite with the following command:

make test

If you only need to run the Python tests, you can do so with make test-python , as well as test-js for the
JavaScript tests.

You’ll notice that the test suite is structured based on where the code lives, and strongly encourages using the mock
library to drive more accurate individual tests.

Note: We use py.test for the Python test suite, and a combination of phantomjs and jasmine for the JavaScript tests.

Static Media

Lemur uses a library that compiles it’s static media assets (LESS and JS files) automatically. If you’re developing
using runserver you’ll see changes happen not only in the original files, but also the minified or processed versions of
the file.

If you’ve made changes and need to compile them by hand for any reason, you can do so by running:

lemur compilestatic

The minified and processed files should be committed alongside the unprocessed changes.

It’s also important to note that Lemur’s frontend and API are not tied together. The API does not serve any of the static
assets, we rely on nginx or some other file server to server all of the static assets. During development that means we
need an additional server to serve those static files for the GUI.

This is accomplished with a Gulp task:

./node_modules/.bin/gulp serve

The gulp task compiles all the JS/CSS/HTML files and opens the Lemur welcome page in your default browsers.
Additionally any changes to made to the JS/CSS/HTML with be reloaded in your browsers.

Developing with Flask

Because Lemur is just Flask, you can use all of the standard Flask functionality. The only difference is you’ll be
accessing commands that would normally go through manage.py using the lemur CLI helper instead.

4.1. Contributing 41

http://pre-commit.com/

Lemur Documentation, Release 0.5.0

For example, you probably don’t want to use lemur start for development, as it doesn’t support anything like
automatic reloading on code changes. For that you’d want to use the standard builtin runserver command:

lemur runserver

DDL (Schema Changes)

Schema changes should always introduce the new schema in a commit, and then introduce code relying on that schema
in a followup commit. This also means that new columns must be NULLable.

Removing columns and tables requires a slightly more painful flow, and should resemble the follow multi-commit
flow:

• Remove all references to the column or table (but don’t remove the Model itself)

• Remove the model code

• Remove the table or column

Contributing Back Code

All patches should be sent as a pull request on GitHub, include tests, and documentation where needed. If you’re
fixing a bug or making a large change the patch must include test coverage.

Uncertain about how to write tests? Take a look at some existing tests that are similar to the code you’re changing, and
go from there.

You can see a list of open pull requests (pending changes) by visiting https://github.com/netflix/lemur/pulls

Pull requests should be against master and pass all TravisCI checks

Writing a Plugin

Several interfaces exist for extending Lemur:

• Issuer (lemur.plugins.base.issuer)

• Destination (lemur.plugins.base.destination)

• Source (lemur.plugins.base.source)

• Notification (lemur.plugins.base.notification)

Each interface has its own functions that will need to be defined in order for your plugin to work correctly. See Plugin
Interfaces for details.

Structure

A plugins layout generally looks like the following:

setup.py
lemur_pluginname/
lemur_pluginname/__init__.py
lemur_pluginname/plugin.py

42 Chapter 4. Developers

https://github.com/netflix/lemur/pulls

Lemur Documentation, Release 0.5.0

The __init__.py file should contain no plugin logic, and at most, a VERSION = ‘x.x.x’ line. For example, if you
want to pull the version using pkg_resources (which is what we recommend), your file might contain:

try:
VERSION = __import__('pkg_resources') \

.get_distribution(__name__).version
except Exception as e:

VERSION = 'unknown'

Inside of plugin.py , you’ll declare your Plugin class:

import lemur_pluginname
from lemur.plugins.base.issuer import IssuerPlugin

class PluginName(IssuerPlugin):
title = 'Plugin Name'
slug = 'pluginname'
description = 'My awesome plugin!'
version = lemur_pluginname.VERSION

author = 'Your Name'
author_url = 'https://github.com/yourname/lemur_pluginname'

def widget(self, request, group, **kwargs):
return "<p>Absolutely useless widget</p>"

And you’ll register it via entry_points in your setup.py :

setup(
...
entry_points={

'lemur.plugins': [
'pluginname = lemur_pluginname.issuers:PluginName'

],
},

)

You can potentially package multiple plugin types in one package, say you want to create a source and destination
plugins for the same third-party. To accomplish this simply alias the plugin in entry points to point at multiple plugins
within your package:

setup(
...
entry_points={

'lemur.plugins': [
'pluginnamesource = lemur_pluginname.plugin:PluginNameSource',
'pluginnamedestination = lemur_pluginname.plugin:PluginNameDestination'

],
},

)

Once your plugin files are in place and the /www/lemur/setup.py file has been modified, you can load your
plugin into your instance by reinstalling lemur:

(lemur)$cd /www/lemur
(lemur)$pip install -e .

That’s it! Users will be able to install your plugin via pip install <package name> .

4.2. Writing a Plugin 43

Lemur Documentation, Release 0.5.0

See also:

For more information about python packages see Python Packaging

See also:

For an example of a plugin operation outside of Lemur’s core, see lemur-digicert

Plugin Interfaces

In order to use the interfaces all plugins are required to inherit and override unimplemented functions of the parent
object.

Issuer

Issuer plugins are used when you have an external service that creates certificates or authorities. In the simple case the
third party only issues certificates (Verisign, DigiCert, etc.).

If you have a third party or internal service that creates authorities (EJBCA, etc.), Lemur has you covered, it can treat
any issuer plugin as both a source of creating new certificates as well as new authorities.

The IssuerPlugin exposes two functions:

def create_certificate(self, csr, issuer_options):
requests.get('a third party')

Lemur will pass a dictionary of all possible options for certificate creation. Including a valid CSR, and the raw options
associated with the request.

If you wish to be able to create new authorities implement the following function and ensure that the
ROOT_CERTIFICATE and the INTERMEDIATE_CERTIFICATE (if any) for the new authority is returned:

def create_authority(self, options):
root_cert, intermediate_cert, username, password = request.get('a third party')

if your provider creates specific credentials for each authority you can
→˓associated them with the role associated with the authority

these credentials will be provided along with any other options when a
→˓certificate is created

role = dict(username=username, password=password, name='generatedAuthority')
return root_cert, intermediate_cert, [role]

Note: Lemur uses PEM formatted certificates as it’s internal standard, if you receive certificates in other formats
convert them to PEM before returning.

If instead you do not need need to generate authorities but instead use a static authority (Verisign, DigiCert), you can
use publicly available constants:

def create_authority(self, options):
optionally associate a role with authority to control who can use it
role = dict(username='', password='', name='exampleAuthority')
username and password don't really matter here because we do no need to

→˓authenticate our authority against a third party
return EXAMPLE_ROOT_CERTIFICATE, EXAMPLE_INTERMEDIATE_CERTIFICATE, [role]

44 Chapter 4. Developers

https://packaging.python.org/en/latest/distributing.html
https://github.com/opendns/lemur-digicert

Lemur Documentation, Release 0.5.0

Note: You do not need to associate roles to the authority at creation time as they can always be associated after the
fact.

The IssuerPlugin doesn’t have any options like Destination, Source, and Notification plugins. Essentially Lemur
should already have any fields you might need to submit a request to a third party. If there are additional options you
need in your plugin feel free to open an issue, or look into adding additional options to issuers yourself.

Destination

Destination plugins allow you to propagate certificates managed by Lemur to additional third parties. This provides
flexibility when different orchestration systems have their own way of manage certificates or there is an existing system
you wish to integrate with Lemur.

By default destination plugins have a private key requirement. If your plugin does not require a certificates private key
mark requires_key = False in the plugins base class like so:

class MyDestinationPlugin(DestinationPlugin):
requires_key = False

The DestinationPlugin requires only one function to be implemented:

def upload(self, name, body, private_key, cert_chain, options, **kwargs):
request.post('a third party')

Additionally the DestinationPlugin allows the plugin author to add additional options that can be used to help define
sub-destinations.

For example, if we look at the aws-destination plugin we can see that it defines an accountNumber option:

options = [
{

'name': 'accountNumber',
'type': 'int',
'required': True,
'validation': '/^[0-9]{12,12}$/',
'helpMessage': 'Must be a valid AWS account number!',

}
]

By defining an accountNumber we can make this plugin handle many N number of AWS accounts instead of just one.

The schema for defining plugin options are pretty straightforward:

• Name: name of the variable you wish to present the user, snake case (snakeCase) is preferred as Lemur will
parse these and create pretty variable titles

• Type there are currently four supported variable types

– Int creates an html integer box for the user to enter integers into

– Str creates a html text input box

– Boolean creates a checkbox for the user to signify truthiness

– Select creates a select box that gives the user a list of options

* When used a available key must be provided with a list of selectable options

• Required determines if this option is required, this must be a boolean value

4.2. Writing a Plugin 45

Lemur Documentation, Release 0.5.0

• Validation simple JavaScript regular expression used to give the user an indication if the input value is valid

• HelpMessage simple string that provides more detail about the option

Note: DestinationPlugin, NotificationPlugin and SourcePlugin all support the option schema outlined above.

Notification

Lemur includes the ability to create Email notifications by default. These notifications currently come in the form of
expiration notices. Lemur periodically checks certifications expiration dates and determines if a given certificate is
eligible for notification. There are currently only two parameters used to determine if a certificate is eligible; validity
expiration (date the certificate is no longer valid) and the number of days the current date (UTC) is from that expiration
date.

There are currently two objects that available for notification plugins the first is NotficationPlugin. This is the base
object for any notification within Lemur. Currently the only support notification type is an certificate expiration
notification. If you are trying to create a new notification type (audit, failed logins, etc.) this would be the object to
base your plugin on. You would also then need to build additional code to trigger the new notification type.

The second is ExpirationNotificationPlugin, this object inherits from NotificationPlugin object. You will most likely
want to base your plugin on, if you want to add new channels for expiration notices (Slack, HipChat, Jira, etc.). It adds
default options that are required by all expiration notifications (interval, unit). This interface expects for the child to
define the following function:

def send(self, notification_type, message, targets, options, **kwargs):
request.post("some alerting infrastructure")

Source

When building Lemur we realized that although it would be nice if every certificate went through Lemur to get issued,
but this is not always be the case. Oftentimes there are third parties that will issue certificates on your behalf and these
can get deployed to infrastructure without any interaction with Lemur. In an attempt to combat this and try to track
every certificate, Lemur has a notion of certificate Sources. Lemur will contact the source at periodic intervals and
attempt to sync against the source. This means downloading or discovering any certificate Lemur does not know about
and adding the certificate to its inventory to be tracked and alerted on.

The SourcePlugin object has one default option of pollRate. This controls the number of seconds which to get new
certificates.

Warning: Lemur currently has a very basic polling system of running a cron job every 15min to see which source
plugins need to be run. A lock file is generated to guarantee that only one sync is running at a time. It also means
that the minimum resolution of a source plugin poll rate is effectively 15min. You can always specify a faster cron
job if you need a higher resolution sync job.

The SourcePlugin object requires implementation of one function:

def get_certificates(self, options, **kwargs):
request.get("some source of certificates")

Note: Oftentimes to facilitate code re-use it makes sense put source and destination plugins into one package.

46 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

Export

Formats, formats and more formats. That’s the current PKI landscape. See the always relevant xkcd. Thankfully
Lemur supports the ability to output your certificates into whatever format you want. This integration comes by the
way of Export plugins. Support is still new and evolving, the goal of these plugins is to return raw data in a new format
that can then be used by any number of applications. Included in Lemur is the JavaExportPlugin which currently
supports generating a Java Key Store (JKS) file for use in Java based applications.

The ExportPlugin object requires the implementation of one function:

def export(self, body, chain, key, options, **kwargs):
sys.call('openssl hokuspocus')
return "extension", passphrase, raw

Note: Support of various formats sometimes relies on external tools system calls. Always be mindful of sanitizing
any input to these calls.

Testing

Lemur provides a basic py.test-based testing framework for extensions.

In a simple project, you’ll need to do a few things to get it working:

setup.py

Augment your setup.py to ensure at least the following:

setup(
...
install_requires=[

'lemur',
]

)

conftest.py

The conftest.py file is our main entry-point for py.test. We need to configure it to load the Lemur pytest config-
uration:

from lemur.tests.conftest import * # noqa

Test Cases

You can now inherit from Lemur’s core test classes. These are Django-based and ensure the database and other basic
utilities are in a clean state:

import pytest
from lemur.tests.vectors import INTERNAL_CERTIFICATE_A_STR, INTERNAL_PRIVATE_KEY_A_STR

def test_export_keystore(app):

4.2. Writing a Plugin 47

https://xkcd.com/927/

Lemur Documentation, Release 0.5.0

from lemur.plugins.base import plugins
p = plugins.get('java-keystore-jks')
options = [{'name': 'passphrase', 'value': 'test1234'}]
with pytest.raises(Exception):

p.export(INTERNAL_CERTIFICATE_A_STR, "", "", options)

raw = p.export(INTERNAL_CERTIFICATE_A_STR, "", INTERNAL_PRIVATE_KEY_A_STR,
→˓options)

assert raw != b""

Running Tests

Running tests follows the py.test standard. As long as your test files and methods are named appropriately
(test_filename.py and test_function()) you can simply call out to py.test:

$ py.test -v
============================== test session starts ==============================
platform darwin -- Python 2.7.10, pytest-2.8.5, py-1.4.30, pluggy-0.3.1
cachedir: .cache
plugins: flask-0.10.0
collected 346 items

lemur/plugins/lemur_acme/tests/test_acme.py::test_get_certificates PASSED

=========================== 1 passed in 0.35 seconds ============================

See also:

Lemur bundles several plugins that use the same interfaces mentioned above.

REST API

Lemur’s front end is entirely API driven. Any action that you can accomplish via the UI can also be accomplished by
the API. The following is documents and provides examples on how to make requests to the Lemur API.

Authentication

class lemur.auth.views. Google
Bases: flask_restful.Resource

endpoint = ‘google’

mediatypes (resource_cls)

methods = [’POST’]

post ()

class lemur.auth.views. Login
Bases: flask_restful.Resource

Provides an endpoint for Lemur’s basic authentication. It takes a username and password combination and
returns a JWT token.

48 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

This token token is required for each API request and must be provided in the Authorization Header for the
request.

Authorization:Bearer <token>

Tokens have a set expiration date. You can inspect the token expiration by base64 decoding the token and
inspecting it’s contents.

Note: It is recommended that the token expiration is fairly short lived (hours not days). This will largely depend
on your uses cases but. It is important to not that there is currently no build in method to revoke a users token
and force re-authentication.

endpoint = ‘login’

mediatypes (resource_cls)

methods = [’POST’]

post ()

POST /auth/login
Login with username:password

Example request:

POST /auth/login HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"username": "test",
"password": "test"

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"token": "12343243243"

}

Parameters
• username – username
• password – password

Status Codes
• 401 Unauthorized – invalid credentials
• 200 OK – no error

class lemur.auth.views. OAuth2
Bases: flask_restful.Resource

endpoint = ‘oauth2’

mediatypes (resource_cls)

4.3. REST API 49

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

methods = [’POST’]

post ()

class lemur.auth.views. Ping
Bases: flask_restful.Resource

This class serves as an example of how one might implement an SSO provider for use with Lemur. In this
example we use an OpenIDConnect authentication flow, that is essentially OAuth2 underneath. If you have an
OAuth2 provider you want to use Lemur there would be two steps:

1.Define your own class that inherits from flask.ext.restful.Resource and create the HTTP
methods the provider uses for it’s callbacks.

2.Add or change the Lemur AngularJS Configuration to point to your new provider

endpoint = ‘ping’

mediatypes (resource_cls)

methods = [’POST’]

post ()

class lemur.auth.views. Providers
Bases: flask_restful.Resource

endpoint = ‘providers’

get ()

mediatypes (resource_cls)

methods = [’GET’]

Destinations

class lemur.destinations.views. CertificateDestinations
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificate/<int:certificate_id/destinations” endpoint

endpoint = ‘certificateDestinations’

get (certificate_id)

GET /certificates/1/destinations
The current account list for a given certificates

Example request:

GET /certificates/1/destinations HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{

50 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

"items": [{
"description": "test",
"options": [{

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}
"total": 1

}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.destinations.views. Destinations
Bases: lemur.auth.service.AuthenticatedResource

delete (destination_id)

endpoint = ‘destination’

get (destination_id)

GET /destinations/1
Get a specific account

Example request:

4.3. REST API 51

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

GET /destinations/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "test",
"options": [{

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’DELETE’, ‘GET’, ‘PUT’]

put (destination_id, data=None)

PUT /destinations/1
Updates an account

Example request:

POST /destinations/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

52 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

{
"description": "test33",
"options": [{

"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "test",
"options": [{

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

4.3. REST API 53

Lemur Documentation, Release 0.5.0

}

Parameters
• accountNumber – aws account number
• label – human readable account label
• description – some description about the account

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

class lemur.destinations.views. DestinationsList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘destinations’ endpoint

endpoint = ‘destinations’

get ()

GET /destinations
The current account list

Example request:

GET /destinations HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"description": "test",
"options": [{

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",

54 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"title": "AWS"
},
"label": "test546"

}
"total": 1

}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int. default is 1
• filter – key value pair format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /destinations
Creates a new account

Example request:

POST /destinations HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"description": "test33",
"options": [{

"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},

4.3. REST API 55

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"label": "test546"
}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "test33",
"options": [{

"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

Parameters
• label – human readable account label
• description – some description about the account

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

class lemur.destinations.views. DestinationsStats
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ stats endpoint

endpoint = ‘destinationStats’

get ()

mediatypes (resource_cls)

methods = [’GET’]

56 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Notifications

class lemur.notifications.views. CertificateNotifications
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificate/<int:certificate_id/notifications” endpoint

endpoint = ‘certificateNotifications’

get (certificate_id)

GET /certificates/1/notifications
The current account list for a given certificates

Example request:

GET /certificates/1/notifications HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"description": "An example",
"options": [

{
"name": "interval",
"required": true,
"value": 555,
"helpMessage": "Number of days to be alert before

→˓expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses

→˓",

4.3. REST API 57

Lemur Documentation, Release 0.5.0

"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "example",
"pluginName": "email-notification",
"active": true,
"id": 2

}
],
"total": 1

}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.notifications.views. Notifications
Bases: lemur.auth.service.AuthenticatedResource

delete (notification_id)

endpoint = ‘notification’

get (notification_id)

GET /notifications/1
Get a specific account

Example request:

GET /notifications/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "a test",
"options": [

{
"name": "interval",
"required": true,
"value": 5,

58 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"helpMessage": "Number of days to be alert before expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "test",
"pluginName": "email-notification",
"active": true,
"id": 2

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’DELETE’, ‘GET’, ‘PUT’]

put (notification_id, data=None)

PUT /notifications/1
Updates an account

Example request:

POST /notifications/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

4.3. REST API 59

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

{
"id": 1,
"accountNumber": 11111111111,
"label": "labelChanged",
"comments": "this is a thing"

}

Parameters
• accountNumber – aws account number
• label – human readable account label
• comments – some description about the account

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

class lemur.notifications.views. NotificationsList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘notifications’ endpoint

endpoint = ‘notifications’

get ()

GET /notifications
The current account list

Example request:

GET /notifications HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"description": "An example",
"options": [

{
"name": "interval",
"required": true,
"value": 5,
"helpMessage": "Number of days to be alert before

→˓expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",

60 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"months"
],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses

→˓",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "example",
"pluginName": "email-notification",
"active": true,
"id": 2

}
],
"total": 1

}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /notifications
Creates a new account

Example request:

POST /notifications HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"description": "a test",
"options": [

{

4.3. REST API 61

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"name": "interval",
"required": true,
"value": 5,
"helpMessage": "Number of days to be alert before expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "test",
"pluginName": "email-notification",
"active": true,
"id": 2

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "a test",
"options": [

{
"name": "interval",
"required": true,
"value": 5,
"helpMessage": "Number of days to be alert before expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],

62 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "test",
"pluginName": "email-notification",
"active": true,
"id": 2

}

Parameters
• accountNumber – aws account number
• label – human readable account label
• comments – some description about the account

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

Users

class lemur.users.views. CertificateUsers
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘certificateCreator’

get (certificate_id)

GET /certificates/1/creator
Get a certificate’s creator

Example request:

GET /certificates/1/creator HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{

4.3. REST API 63

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"id": 1,
"active": false,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.users.views. Me
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘me’

get ()

GET /auth/me
Get the currently authenticated user

Example request:

GET /auth/me HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"active": false,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.users.views. RoleUsers
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘roleUsers’

64 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

get (role_id)

GET /roles/1/users
Get all users associated with a role

Example request:

GET /roles/1/users HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 2,
"active": True,
"email": "user2@example.com",
"username": "user2",
"profileImage": null

},
{
"id": 1,
"active": False,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}
]

"total": 2
}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.users.views. Users
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘user’

get (user_id)

GET /users/1
Get a specific user

Example request:

4.3. REST API 65

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

GET /users/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"active": false,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (user_id, data=None)

PUT /users/1
Update a user

Example request:

PUT /users/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"username": "user1",
"email": "user1@example.com",
"active": false,
"roles": [

{'id': 1} - or - {'name': 'myRole'}
]

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"username": "user1",
"email": "user1@example.com",
"active": false,

66 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"profileImage": null
}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

class lemur.users.views. UsersList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘users’ endpoint

endpoint = ‘users’

get ()

GET /users
The current user list

Example request:

GET /users HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 2,
"active": True,
"email": "user2@example.com",
"username": "user2",
"profileImage": null

},
{

"id": 1,
"active": False,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}
]
"total": 2

}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v
• count – count number default is 10

4.3. REST API 67

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /users
Creates a new user

Example request:

POST /users HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"username": "user3",
"email": "user3@example.com",
"active": true,
"roles": [

{'id': 1} - or - {'name': 'myRole'}
]

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 3,
"active": True,
"email": "user3@example.com,
"username": "user3",
"profileImage": null

}

Parameters
• username – username for new user
• email – email address for new user
• password – password for new user
• active – boolean, if the user is currently active
• roles – list, roles that the user should be apart of

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

68 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Roles

class lemur.roles.views. AuthorityRolesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘roles’ endpoint

endpoint = ‘authorityRoles’

get (authority_id)

GET /authorities/1/roles
List of roles for a given authority

Example request:

GET /authorities/1/roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "role1",
"description": "this is role1"

},
{
"id": 2,
"name": "role2",
"description": "this is role2"

}
]

"total": 2
}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.roles.views. RoleViewCredentials
Bases: lemur.auth.service.AuthenticatedResource

4.3. REST API 69

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

endpoint = ‘roleCredentials‘’

get (role_id)

GET /roles/1/credentials
View a roles credentials

Example request:

GET /users/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"username: "ausername",
"password": "apassword"

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.roles.views. Roles
Bases: lemur.auth.service.AuthenticatedResource

delete (role_id)

DELETE /roles/1
Delete a role

Example request:

DELETE /roles/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"message": "ok"

}

Request Headers

70 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

• Authorization – OAuth token to authenticate
Status Codes

• 200 OK – no error
• 403 Forbidden – unauthenticated

endpoint = ‘role’

get (role_id)

GET /roles/1
Get a particular role

Example request:

GET /roles/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "role1",
"description": "this is role1"

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’DELETE’, ‘GET’, ‘PUT’]

put (role_id, data=None)

PUT /roles/1
Update a role

Example request:

PUT /roles/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "role1",
"description": "This is a new description"

}

Example response:

4.3. REST API 71

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "role1",
"description": "this is a new description"

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

class lemur.roles.views. RolesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘roles’ endpoint

endpoint = ‘roles’

get ()

GET /roles
The current role list

Example request:

GET /roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "role1",
"description": "this is role1"

},
{
"id": 2,
"name": "role2",
"description": "this is role2"

}
]

"total": 2
}

Query Parameters
• sortBy – field to sort on

72 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /roles
Creates a new role

Example request:

POST /roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "role3",
"description": "this is role3",
"username": null,
"password": null,
"users": [

{'id': 1}
]

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 3,
"description": "this is role3",
"name": "role3"

}

Parameters
• name – name for new role
• description – description for new role
• password – password for new role
• username – username for new role
• users – list, of users to associate with role

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

4.3. REST API 73

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

class lemur.roles.views. UserRolesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘roles’ endpoint

endpoint = ‘userRoles’

get (user_id)

GET /users/1/roles
List of roles for a given user

Example request:

GET /users/1/roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "role1",
"description": "this is role1"

},
{
"id": 2,
"name": "role2",
"description": "this is role2"

}
]

"total": 2
}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

74 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Certificates

class lemur.certificates.views. CertificateExport
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘exportCertificate’

mediatypes (resource_cls)

methods = [’POST’]

post (certificate_id, data=None)

POST /certificates/1/export
Export a certificate

Example request:

PUT /certificates/1/export HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"export": {

"plugin": {
"pluginOptions": [{

"available": ["Java Key Store (JKS)"],
"required": true,
"type": "select",
"name": "type",
"helpMessage": "Choose the format you wish to export",
"value": "Java Key Store (JKS)"

}, {
"required": false,
"type": "str",
"name": "passphrase",
"validation": "^(?=.*[A-Za-z])(?=.*\d)(?=.*[$@$!%*#?&])[A-

→˓Za-z\d$@$!%*#?&]{8,}$",
"helpMessage": "If no passphrase is given one will be

→˓generated for you, we highly recommend this. Minimum length is 8."
}, {

"required": false,
"type": "str",
"name": "alias",
"helpMessage": "Enter the alias you wish to use for the

→˓keystore."
}],
"version": "unknown",
"description": "Attempts to generate a JKS keystore or

→˓truststore",
"title": "Java",
"author": "Kevin Glisson",
"type": "export",
"slug": "java-export"

}
}

}

Example response:

4.3. REST API 75

Lemur Documentation, Release 0.5.0

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"data": "base64encodedstring",
"passphrase": "UAWOHW#&@_%!tnwmxh832025",
"extension": "jks"

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

class lemur.certificates.views. CertificatePrivateKey
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘privateKeyCertificates’

get (certificate_id)

GET /certificates/1/key
Retrieves the private key for a given certificate

Example request:

GET /certificates/1/key HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"key": "-----BEGIN ...",

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.certificates.views. Certificates
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘certificate’

get (certificate_id)

76 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

GET /certificates/1
One certificate

Example request:

GET /certificates/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-20180112

→˓",
"roles": [{

"id": 464,

4.3. REST API 77

Lemur Documentation, Release 0.5.0

"description": "This is a google group based role created by Lemur",
"name": "joe@example.com"

}],
"san": null

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (certificate_id, data=None)

PUT /certificates/1
Update a certificate

Example request:

PUT /certificates/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"owner": "jimbob@example.com",
"active": false
"notifications": [],
"destinations": [],
"replacements": []

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",

78 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-20180112

→˓",
"roles": [{

"id": 464,
"description": "This is a google group based role created by Lemur",
"name": "joe@example.com"

}],
"san": null

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

class lemur.certificates.views. CertificatesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ endpoint

endpoint = ‘certificates’

get ()

GET /certificates
The current list of certificates

Example request:

GET /certificates HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

4.3. REST API 79

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by

→˓Lemur",
"name": "joe@example.com"

}],
"san": null

}],
"total": 1

}

80 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int. default is 1
• filter – key value pair format is k;v
• count – count number. default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /certificates
Creates a new certificate

Example request:

POST /certificates HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"owner": "secure@example.net",
"commonName": "test.example.net",
"country": "US",
"extensions": {
"subAltNames": {
"names": [
{
"nameType": "DNSName",
"value": "*.test.example.net"

},
{
"nameType": "DNSName",
"value": "www.test.example.net"

}
]

}
},
"replacements": [{
"id": 1

},
"notify": true,
"validityEnd": "2026-01-01T08:00:00.000Z",
"authority": {
"name": "verisign"

},
"organization": "Netflix, Inc.",
"location": "Los Gatos",
"state": "California",
"validityStart": "2016-11-11T04:19:48.000Z",
"organizationalUnit": "Operations"

4.3. REST API 81

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [{

"id": 1
}],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-20180112

→˓",
"roles": [{

"id": 464,
"description": "This is a google group based role created by Lemur",
"name": "joe@example.com"

}],
"san": null

}

82 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

Parameters
• extensions – extensions to be used in the certificate
• description – description for new certificate
• owner – owner email
• validityStart – when the certificate should start being valid
• validityEnd – when the certificate should expire
• authority – authority that should issue the certificate
• country – country for the CSR
• state – state for the CSR
• location – location for the CSR
• organization – organization for CSR
• commonName – certificate common name

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

class lemur.certificates.views. CertificatesReplacementsList
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘replacements’

get (certificate_id)

GET /certificates/1/replacements
One certificate

Example request:

GET /certificates/1/replacements HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",

4.3. REST API 83

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by

→˓Lemur",
"name": "joe@example.com"

}],
"san": null

}],
"total": 1

}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.certificates.views. CertificatesStats
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ stats endpoint

endpoint = ‘certificateStats’

get ()

mediatypes (resource_cls)

methods = [’GET’]

class lemur.certificates.views. CertificatesUpload
Bases: lemur.auth.service.AuthenticatedResource

84 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

Defines the ‘certificates’ upload endpoint

endpoint = ‘certificateUpload’

mediatypes (resource_cls)

methods = [’POST’]

post (data=None)

POST /certificates/upload
Upload a certificate

Example request:

POST /certificates/upload HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"owner": "joe@example.com",
"publicCert": "-----BEGIN CERTIFICATE-----...",
"intermediateCert": "-----BEGIN CERTIFICATE-----...",
"privateKey": "-----BEGIN RSA PRIVATE KEY-----..."
"destinations": [],
"notifications": [],
"replacements": [],
"name": "cert1"

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1

4.3. REST API 85

Lemur Documentation, Release 0.5.0

}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-20180112

→˓",
"roles": [{

"id": 464,
"description": "This is a google group based role created by Lemur",
"name": "joe@example.com"

}],
"san": null

}

Parameters
• owner – owner email for certificate
• publicCert – valid PEM public key for certificate

:arg intermediateCert valid PEM intermediate key for certificate :arg privateKey: valid PEM private
key for certificate :arg destinations: list of aws destinations to upload the certificate to :reqheader
Authorization: OAuth token to authenticate :statuscode 403: unauthenticated :statuscode 200: no
error

class lemur.certificates.views. NotificationCertificatesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ endpoint

endpoint = ‘notificationCertificates’

get (notification_id)

GET /notifications/1/certificates
The current list of certificates for a given notification

Example request:

GET /notifications/1/certificates HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{

86 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

"items": [{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by

→˓Lemur",
"name": "joe@example.com"

}],
"san": null

}],
"total": 1

}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair format is k;v

4.3. REST API 87

Lemur Documentation, Release 0.5.0

• count – count number default is 10
Request Headers

• Authorization – OAuth token to authenticate
Status Codes

• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

Authorities

class lemur.authorities.views. Authorities
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘authority’

get (authority_id)

GET /authorities/1
One authority

Example request:

GET /authorities/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"active": true,
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}

Parameters
• description – a sensible description about what the CA with be used for
• owner – the team or person who ‘owns’ this authority
• active – set whether this authoritity is currently in use

88 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

Request Headers
• Authorization – OAuth token to authenticate
• Authorization – OAuth token to authenticate

Status Codes
• 403 Forbidden – unauthenticated
• 200 OK – no error
• 200 OK – no error
• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (authority_id, data=None)

PUT /authorities/1
Update an authority

Example request:

PUT /authorities/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "TestAuthority5",
"roles": [{

"id": 566,
"name": "TestAuthority5_admin"

}, {
"id": 567,
"name": "TestAuthority5_operator"

}, {
"id": 123,
"name": "secure@example.com"

}],
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----",
"status": null,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the TestAuthority5

→˓certificate authority.",
"chain": "",
"notBefore": "2016-06-03T00:00:51+00:00",
"notAfter": "2036-06-03T23:59:51+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2280,
"name": "TestAuthority5"

},
"owner": "secure@example.com",

4.3. REST API 89

http://tools.ietf.org/html/rfc7235#section-4.2
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"id": 44,
"description": "This is the ROOT certificate for the TestAuthority5

→˓certificate authority."
}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2235,
"name": "TestAuthority"

},
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

90 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

class lemur.authorities.views. AuthoritiesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘authorities’ endpoint

endpoint = ‘authorities’

get ()

GET /authorities
The current list of authorities

Example request:

GET /authorities HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the

→˓TestAuthority certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2235,
"name": "TestAuthority"

4.3. REST API 91

Lemur Documentation, Release 0.5.0

},
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}
"total": 1

}

Query Parameters
• sortBy – field to sort on
• sortDir – asc or desc
• page – int default is 1
• filter – key value pair. format is k;v
• count – count number default is 10

Request Headers
• Authorization – OAuth token to authenticate

Status Codes
• 200 OK – no error
• 403 Forbidden – unauthenticated

Note this will only show certificates that the current user is authorized to use

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /authorities
Create an authority

Example request:

POST /authorities HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"country": "US",
"state": "California",
"location": "Los Gatos",
"organization": "Netflix",
"organizationalUnit": "Operations",
"type": "root",
"signingAlgorithm": "sha256WithRSA",
"sensitivity": "medium",
"keyType": "RSA2048",
"plugin": {

"slug": "cloudca-issuer",
},
"name": "TimeTestAuthority5",
"owner": "secure@example.com",
"description": "test",
"commonName": "AcommonName",
"validityYears": "20",
"extensions": {

"subAltNames": {
"names": []

92 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

},
"custom": []

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2235,
"name": "TestAuthority"

},
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}

Parameters
• name – authority’s name
• description – a sensible description about what the CA with be used for
• owner – the team or person who ‘owns’ this authority
• validityStart – when this authority should start issuing certificates
• validityEnd – when this authority should stop issuing certificates

4.3. REST API 93

Lemur Documentation, Release 0.5.0

• validityYears – starting from now how many years into the future the authority
should be valid

• extensions – certificate extensions
• plugin – name of the plugin to create the authority
• type – the type of authority (root/subca)
• parent – the parent authority if this is to be a subca
• signingAlgorithm – algorithm used to sign the authority
• keyType – key type
• sensitivity – the sensitivity of the root key, for CloudCA this determines if the root

keys are stored

in an HSM :arg keyName: name of the key to store in the HSM (CloudCA) :arg serialNumber: serial
number of the authority :arg firstSerial: specifies the starting serial number for certificates issued off of
this authority :reqheader Authorization: OAuth token to authenticate :statuscode 403: unauthenticated
:statuscode 200: no error

class lemur.authorities.views. AuthorityVisualizations
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘authority_visualizations’

get (authority_id)
{“name”: “flare”, “children”: [

{ “name”: “analytics”, “children”: [

{ “name”: “cluster”, “children”: [

{“name”: “AgglomerativeCluster”, “size”: 3938}, {“name”: “CommunityS-
tructure”, “size”: 3812}, {“name”: “HierarchicalCluster”, “size”: 6714},
{“name”: “MergeEdge”, “size”: 743}

]

}

}

]}

mediatypes (resource_cls)

methods = [’GET’]

class lemur.authorities.views. CertificateAuthority
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘certificateAuthority’

get (certificate_id)

GET /certificates/1/authority
One authority for given certificate

Example request:

GET /certificates/1/authority HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

94 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2235,
"name": "TestAuthority"

},
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

4.3. REST API 95

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

Domains

class lemur.domains.views. CertificateDomains
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘domains’ endpoint

endpoint = ‘certificateDomains’

get (certificate_id)

GET /certificates/1/domains
The current domain list

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "www.example.com",
"sensitive": false

},
{
"id": 2,
"name": "www.example2.com",
"sensitive": false

}
]

"total": 2
}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

96 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.domains.views. Domains
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘domain’

get (domain_id)

GET /domains/1
Fetch one domain

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "www.example.com",
"sensitive": false

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (domain_id, data=None)

GET /domains/1
update one domain

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{

4.3. REST API 97

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"name": "www.example.com",
"sensitive": false

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "www.example.com",
"sensitive": false

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.domains.views. DomainsList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘domains’ endpoint

endpoint = ‘domains’

get ()

GET /domains
The current domain list

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "www.example.com",
"sensitive": false

},
{
"id": 2,

98 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"name": "www.example2.com",
"sensitive": false

}
]

"total": 2
}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number. default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /domains
The current domain list

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "www.example.com",
"sensitive": false

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "www.example.com",
"sensitive": false

}

4.3. REST API 99

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

Internals

lemur Package

lemur Package

constants Module

database Module

lemur.database. add (model)
Helper to add a model to the current session.

Parameters model –

Returns

lemur.database. clone (model)
Clones the given model and removes it’s primary key :param model: :return:

lemur.database. commit ()
Helper to commit the current session.

lemur.database. create (model)
Helper that attempts to create a new instance of an object.

Parameters model –

Returns

raise IntegrityError

lemur.database. create_query (model, kwargs)
Returns a SQLAlchemy query object for specified model. Model filtered by the kwargs passed.

Parameters

• model –

• kwargs –

100 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

Returns

lemur.database. delete (model)
Helper that attempts to delete a model.

Parameters model –

lemur.database. filter (query, model, terms)
Helper that searched for ‘like’ strings in column values.

Parameters

• query –

• model –

• terms –

Returns

lemur.database. filter_none (kwargs)
Remove all None values froma given dict. SQLAlchemy does not like to have values that are None passed to it.

Parameters kwargs – Dict to filter

Returns Dict without any ‘None’ values

lemur.database. find_all (query, model, kwargs)
Returns a query object that ensures that all kwargs are present.

Parameters

• query –

• model –

• kwargs –

Returns

lemur.database. find_any (query, model, kwargs)
Returns a query object that allows any kwarg to be present.

Parameters

• query –

• model –

• kwargs –

Returns

lemur.database. get (model, value, field=’id’)
Returns one object filtered by the field and value.

Parameters

• model –

• value –

• field –

Returns

lemur.database. get_all (model, value, field=’id’)
Returns query object with the fields and value filtered.

4.4. Internals 101

Lemur Documentation, Release 0.5.0

Parameters

• model –

• value –

• field –

Returns

lemur.database. paginate (query, page, count)
Returns the items given the count and page specified

Parameters

• query –

• page –

• count –

lemur.database. session_query (model)
Returns a SQLAlchemy query object for the specified model.

If model has a query attribute already, that object will be returned. Otherwise a query will be created and
returned based on session.

Parameters model – sqlalchemy model

Returns query object for model

lemur.database. sort (query, model, field, direction)
Returns objects of the specified model in the field and direction given

Parameters

• query –

• model –

• field –

• direction –

lemur.database. sort_and_page (query, model, args)
Helper that allows us to combine sorting and paging

Parameters

• query –

• model –

• args –

Returns

lemur.database. update (model)
Helper that attempts to update a model.

Parameters model –

Returns

lemur.database. update_list (model, model_attr, item_model, items)
Helper that correctly updates a models items depending on what has changed

Parameters

102 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

• model_attr –

• item_model –

• items –

• model –

Returns

decorators Module

lemur.decorators. crossdomain (origin=None, methods=None, headers=None, max_age=21600,
attach_to_all=True, automatic_options=True)

exceptions Module

exception lemur.exceptions. AttrNotFound (field)
Bases: lemur.exceptions.LemurException

exception lemur.exceptions. DuplicateError (key)
Bases: lemur.exceptions.LemurException

exception lemur.exceptions. InvalidConfiguration
Bases: Exception

exception lemur.exceptions. InvalidListener (*args, **kwargs)
Bases: lemur.exceptions.LemurException

exception lemur.exceptions. LemurException (*args, **kwargs)
Bases: Exception

extensions Module

factory Module

lemur.factory. configure_app (app, config=None)
Different ways of configuration

Parameters

• app –

• config –

Returns

lemur.factory. configure_blueprints (app, blueprints)
We prefix our APIs with their given version so that we can support multiple concurrent API versions.

Parameters

• app –

• blueprints –

lemur.factory. configure_extensions (app)
Attaches and configures any needed flask extensions to our app.

Parameters app –

4.4. Internals 103

Lemur Documentation, Release 0.5.0

lemur.factory. configure_logging (app)
Sets up application wide logging.

Parameters app –

lemur.factory. create_app (app_name=None, blueprints=None, config=None)
Lemur application factory

Parameters

• config –

• app_name –

• blueprints –

Returns

lemur.factory. from_file (file_path, silent=False)
Updates the values in the config from a Python file. This function behaves as if the file was imported as module
with the

Parameters

• file_path –

• silent –

lemur.factory. install_plugins (app)
Installs new issuers that are not currently bundled with Lemur.

Parameters app –

Returns

manage Module

models Module

Subpackages

auth Package

permissions Module

lemur.auth.permissions. AuthorityCreator
alias of authority

lemur.auth.permissions. AuthorityOwner
alias of authority

class lemur.auth.permissions. AuthorityPermission (authority_id, roles)
Bases: flask_principal.Permission

lemur.auth.permissions. CertificateOwner
alias of certificate

class lemur.auth.permissions. CertificatePermission (owner, roles)
Bases: flask_principal.Permission

lemur.auth.permissions. RoleMember
alias of role

104 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

class lemur.auth.permissions. RoleMemberPermission (role_id)
Bases: flask_principal.Permission

class lemur.auth.permissions. SensitiveDomainPermission
Bases: flask_principal.Permission

service Module

class lemur.auth.service. AuthenticatedResource
Bases: flask_restful.Resource

Inherited by all resources that need to be protected by authentication.

method_decorators = [<function login_required>]

lemur.auth.service. create_token (user)
Create a valid JWT for a given user, this token is then used to authenticate sessions until the token expires.

Parameters user –

Returns

lemur.auth.service. fetch_token_header (token)
Fetch the header out of the JWT token.

Parameters token –

Returns

raise jwt.DecodeError

lemur.auth.service. get_rsa_public_key (n, e)
Retrieve an RSA public key based on a module and exponent as provided by the JWKS format.

Parameters

• n –

• e –

Returns a RSA Public Key in PEM format

lemur.auth.service. login_required (f)
Validates the JWT and ensures that is has not expired and the user is still active.

Parameters f –

Returns

lemur.auth.service. on_identity_loaded (sender, identity)
Sets the identity of a given option, assigns additional permissions based on the role that the user is a part of.

Parameters

• sender –

• identity –

views Module

class lemur.auth.views. Google
Bases: flask_restful.Resource

4.4. Internals 105

Lemur Documentation, Release 0.5.0

endpoint = ‘google’

mediatypes (resource_cls)

methods = [’POST’]

post ()

class lemur.auth.views. Login
Bases: flask_restful.Resource

Provides an endpoint for Lemur’s basic authentication. It takes a username and password combination and
returns a JWT token.

This token token is required for each API request and must be provided in the Authorization Header for the
request.

Authorization:Bearer <token>

Tokens have a set expiration date. You can inspect the token expiration by base64 decoding the token and
inspecting it’s contents.

Note: It is recommended that the token expiration is fairly short lived (hours not days). This will largely depend
on your uses cases but. It is important to not that there is currently no build in method to revoke a users token
and force re-authentication.

endpoint = ‘login’

mediatypes (resource_cls)

methods = [’POST’]

post ()

POST /auth/login
Login with username:password

Example request:

POST /auth/login HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"username": "test",
"password": "test"

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"token": "12343243243"

}

Parameters

106 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

• username – username

• password – password

Status Codes

• 401 Unauthorized – invalid credentials

• 200 OK – no error

class lemur.auth.views. OAuth2
Bases: flask_restful.Resource

endpoint = ‘oauth2’

mediatypes (resource_cls)

methods = [’POST’]

post ()

class lemur.auth.views. Ping
Bases: flask_restful.Resource

This class serves as an example of how one might implement an SSO provider for use with Lemur. In this
example we use an OpenIDConnect authentication flow, that is essentially OAuth2 underneath. If you have an
OAuth2 provider you want to use Lemur there would be two steps:

1.Define your own class that inherits from flask.ext.restful.Resource and create the HTTP
methods the provider uses for it’s callbacks.

2.Add or change the Lemur AngularJS Configuration to point to your new provider

endpoint = ‘ping’

mediatypes (resource_cls)

methods = [’POST’]

post ()

class lemur.auth.views. Providers
Bases: flask_restful.Resource

endpoint = ‘providers’

get ()

mediatypes (resource_cls)

methods = [’GET’]

authorities Package

models Module

class lemur.authorities.models. Authority (**kwargs)
Bases: flask_sqlalchemy.Model

active

authority_certificate

body

certificates

4.4. Internals 107

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

chain

date_created

description

id

name

options

owner

plugin

plugin_name

roles

user_id

service Module

lemur.authorities.service. create (**kwargs)
Creates a new authority.

lemur.authorities.service. create_authority_roles (roles, owner, plugin_title, creator)
Creates all of the necessary authority roles. :param creator: :param roles: :return:

lemur.authorities.service. get (authority_id)
Retrieves an authority given it’s ID

Parameters authority_id –

Returns

lemur.authorities.service. get_all ()
Get all authorities that are currently in Lemur.

:rtype : List :return:

lemur.authorities.service. get_authority_role (ca_name, creator=None)
Attempts to get the authority role for a given ca uses current_user as a basis for accomplishing that.

Parameters ca_name –

lemur.authorities.service. get_by_name (authority_name)
Retrieves an authority given it’s name.

Parameters authority_name –

Returns

lemur.authorities.service. mint (**kwargs)
Creates the authority based on the plugin provided.

lemur.authorities.service. render (args)
Helper that helps us render the REST Api responses. :param args: :return:

lemur.authorities.service. update (authority_id, description=None, owner=None, ac-
tive=None, roles=None)

Update an authority with new values.

Parameters

108 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

• authority_id –

• roles – roles that are allowed to use this authority

Returns

views Module

class lemur.authorities.views. Authorities
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘authority’

get (authority_id)

GET /authorities/1
One authority

Example request:

GET /authorities/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"active": true,
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}

Parameters

• description – a sensible description about what the CA with be used for

• owner – the team or person who ‘owns’ this authority

• active – set whether this authoritity is currently in use

Request Headers

• Authorization – OAuth token to authenticate

4.4. Internals 109

http://tools.ietf.org/html/rfc7235#section-4.2

Lemur Documentation, Release 0.5.0

• Authorization – OAuth token to authenticate

Status Codes

• 403 Forbidden – unauthenticated

• 200 OK – no error

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (authority_id, data=None)

PUT /authorities/1
Update an authority

Example request:

PUT /authorities/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "TestAuthority5",
"roles": [{

"id": 566,
"name": "TestAuthority5_admin"

}, {
"id": 567,
"name": "TestAuthority5_operator"

}, {
"id": 123,
"name": "secure@example.com"

}],
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----",
"status": null,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the

→˓TestAuthority5 certificate authority.",
"chain": "",
"notBefore": "2016-06-03T00:00:51+00:00",
"notAfter": "2036-06-03T23:59:51+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2280,
"name": "TestAuthority5"

},

110 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"owner": "secure@example.com",
"id": 44,
"description": "This is the ROOT certificate for the TestAuthority5

→˓certificate authority."
}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2235,
"name": "TestAuthority"

},
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

4.4. Internals 111

http://tools.ietf.org/html/rfc7235#section-4.2

Lemur Documentation, Release 0.5.0

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.authorities.views. AuthoritiesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘authorities’ endpoint

endpoint = ‘authorities’

get ()

GET /authorities
The current list of authorities

Example request:

GET /authorities HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the

→˓TestAuthority certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,

112 Chapter 4. Developers

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"bits": 2048,
"id": 2235,
"name": "TestAuthority"

},
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."
}
"total": 1

}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair. format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

Note this will only show certificates that the current user is authorized to use

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /authorities
Create an authority

Example request:

POST /authorities HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"country": "US",
"state": "California",
"location": "Los Gatos",
"organization": "Netflix",
"organizationalUnit": "Operations",
"type": "root",
"signingAlgorithm": "sha256WithRSA",
"sensitivity": "medium",
"keyType": "RSA2048",
"plugin": {

4.4. Internals 113

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"slug": "cloudca-issuer",
},
"name": "TimeTestAuthority5",
"owner": "secure@example.com",
"description": "test",
"commonName": "AcommonName",
"validityYears": "20",
"extensions": {

"subAltNames": {
"names": []

},
"custom": []

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2235,
"name": "TestAuthority"

},
"owner": "secure@example.com",
"id": 43,
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority."

114 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

}

Parameters

• name – authority’s name

• description – a sensible description about what the CA with be used for

• owner – the team or person who ‘owns’ this authority

• validityStart – when this authority should start issuing certificates

• validityEnd – when this authority should stop issuing certificates

• validityYears – starting from now how many years into the future the authority
should be valid

• extensions – certificate extensions

• plugin – name of the plugin to create the authority

• type – the type of authority (root/subca)

• parent – the parent authority if this is to be a subca

• signingAlgorithm – algorithm used to sign the authority

• keyType – key type

• sensitivity – the sensitivity of the root key, for CloudCA this determines if the
root keys are stored

in an HSM :arg keyName: name of the key to store in the HSM (CloudCA) :arg serialNumber:
serial number of the authority :arg firstSerial: specifies the starting serial number for certificates
issued off of this authority :reqheader Authorization: OAuth token to authenticate :statuscode 403:
unauthenticated :statuscode 200: no error

class lemur.authorities.views. AuthorityVisualizations
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘authority_visualizations’

get (authority_id)
{“name”: “flare”, “children”: [

{ “name”: “analytics”, “children”: [

{ “name”: “cluster”, “children”: [

{“name”: “AgglomerativeCluster”, “size”: 3938}, {“name”: “Commu-
nityStructure”, “size”: 3812}, {“name”: “HierarchicalCluster”, “size”:
6714}, {“name”: “MergeEdge”, “size”: 743}

]

}

}

]}

mediatypes (resource_cls)

methods = [’GET’]

4.4. Internals 115

Lemur Documentation, Release 0.5.0

class lemur.authorities.views. CertificateAuthority
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘certificateAuthority’

get (certificate_id)

GET /certificates/1/authority
One authority for given certificate

Example request:

GET /certificates/1/authority HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"name": "TestAuthority",
"roles": [{

"id": 123,
"name": "secure@example.com"

}, {
"id": 564,
"name": "TestAuthority_admin"

}, {
"id": 565,
"name": "TestAuthority_operator"

}],
"options": null,
"active": true,
"authorityCertificate": {

"body": "-----BEGIN CERTIFICATE-----IyMzU5MTVaMHk...",
"status": true,
"cn": "AcommonName",
"description": "This is the ROOT certificate for the TestAuthority

→˓certificate authority.",
"chain": "",
"notBefore": "2016-06-02T00:00:15+00:00",
"notAfter": "2023-06-02T23:59:15+00:00",
"owner": "secure@example.com",
"user": {

"username": "joe@example.com",
"active": true,
"email": "joe@example.com",
"id": 3

},
"active": true,
"bits": 2048,
"id": 2235,
"name": "TestAuthority"

},
"owner": "secure@example.com",
"id": 43,

116 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

"description": "This is the ROOT certificate for the TestAuthority
→˓certificate authority."
}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

certificates Package

exceptions Module

models Module

class lemur.certificates.models. Certificate (**kwargs)
Bases: flask_sqlalchemy.Model

active

authority_id

bits

body

chain

cn

country

date_created

deleted

description

destinations

domains

endpoints

expired = <sqlalchemy.sql.elements.Case object>

extensions

get_arn (account_number)
Generate a valid AWS IAM arn

:rtype : str :param account_number: :return:

id

4.4. Internals 117

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

issuer

key_type

location

logs

name

not_after

not_before

notifications

notify

organization

organizational_unit

owner

private_key

public_key

replaces

revoked = <sqlalchemy.sql.elements.Case object>

roles

root_authority_id

rotation

san

serial

signing_algorithm

sources

state

status

subject

user_id

validity_range

validity_remaining

lemur.certificates.models. get_or_increase_name (name)

lemur.certificates.models. get_sequence (name)

lemur.certificates.models. update_destinations (target, value, initiator)
Attempt to upload certificate to the new destination

Parameters

• target –

• value –

118 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

• initiator –

Returns

lemur.certificates.models. update_replacement (target, value, initiator)
When a certificate is marked as ‘replaced’ we should not notify.

Parameters

• target –

• value –

• initiator –

Returns

service Module

lemur.certificates.service. calculate_reissue_range (start, end)
Determine what the new validity_start and validity_end dates should be. :param start: :param end: :return:

lemur.certificates.service. create (**kwargs)
Creates a new certificate.

lemur.certificates.service. create_certificate_roles (**kwargs)

lemur.certificates.service. create_csr (**csr_config)
Given a list of domains create the appropriate csr for those domains

Parameters csr_config –

lemur.certificates.service. delete (cert_id)
Delete’s a certificate.

Parameters cert_id –

lemur.certificates.service. export (cert, export_plugin)
Exports a certificate to the requested format. This format may be a binary format.

Parameters

• export_plugin –

• cert –

Returns

lemur.certificates.service. find_duplicates (cert)
Finds certificates that already exist within Lemur. We do this by looking for certificate bodies that are the same.
This is the most reliable way to determine if a certificate is already being tracked by Lemur.

Parameters cert –

Returns

lemur.certificates.service. get (cert_id)
Retrieves certificate by its ID.

Parameters cert_id –

Returns

lemur.certificates.service. get_account_number (arn)
Extract the account number from an arn.

4.4. Internals 119

Lemur Documentation, Release 0.5.0

Parameters arn – IAM SSL arn

Returns account number associated with ARN

lemur.certificates.service. get_all_certs ()
Retrieves all certificates within Lemur.

Returns

lemur.certificates.service. get_all_pending_cleaning (source)
Retrieves all certificates that are available for cleaning.

Parameters source –

Returns

lemur.certificates.service. get_all_pending_reissue ()
Retrieves all certificates that need to be rotated.

Must be X days from expiration, uses LEMUR_DEFAULT_ROTATION_INTERVAL to determine how many
days from expiration the certificate must be for rotation to be pending.

Returns

lemur.certificates.service. get_by_name (name)
Retrieves certificate by its Name.

Parameters name –

Returns

lemur.certificates.service. get_certificate_primitives (certificate)
Retrieve key primitive from a certificate such that the certificate could be recreated with new expiration or be
used to build upon. :param certificate: :return: dict of certificate primitives, should be enough to effectively
re-issue certificate via create.

lemur.certificates.service. get_name_from_arn (arn)
Extract the certificate name from an arn.

Parameters arn – IAM SSL arn

Returns name of the certificate as uploaded to AWS

lemur.certificates.service. import_certificate (**kwargs)
Uploads already minted certificates and pulls the required information into Lemur.

This is to be used for certificates that are created outside of Lemur but should still be tracked.

Internally this is used to bootstrap Lemur with external certificates, and used when certificates are ‘discovered’
through various discovery techniques. was still in aws.

Parameters kwargs –

lemur.certificates.service. mint (**kwargs)
Minting is slightly different for each authority. Support for multiple authorities is handled by individual plugins.

lemur.certificates.service. reissue_certificate (certificate, replace=None,
user=None)

Reissue certificate with the same properties of the given certificate. :param certificate: :param replace: :param
user: :return:

lemur.certificates.service. render (args)
Helper function that allows use to render our REST Api.

Parameters args –

Returns

120 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

lemur.certificates.service. stats (**kwargs)
Helper that defines some useful statistics about certifications.

Parameters kwargs –

Returns

lemur.certificates.service. update (cert_id, **kwargs)
Updates a certificate :param cert_id: :return:

lemur.certificates.service. upload (**kwargs)
Allows for pre-made certificates to be imported into Lemur.

verify Module

lemur.certificates.verify. crl_verify (cert_path)
Attempts to verify a certificate using CRL.

Parameters cert_path –

Returns True if certificate is valid, False otherwise

Raises Exception – If certificate does not have CRL

lemur.certificates.verify. ocsp_verify (cert_path, issuer_chain_path)
Attempts to verify a certificate via OCSP. OCSP is a more modern version of CRL in that it will query the OCSP
URI in order to determine if the certificate as been revoked

Parameters

• cert_path –

• issuer_chain_path –

Return bool True if certificate is valid, False otherwise

lemur.certificates.verify. verify (cert_path, issuer_chain_path)
Verify a certificate using OCSP and CRL

Parameters

• cert_path –

• issuer_chain_path –

Returns True if valid, False otherwise

lemur.certificates.verify. verify_string (cert_string, issuer_string)
Verify a certificate given only it’s string value

Parameters

• cert_string –

• issuer_string –

Returns True if valid, False otherwise

views Module

class lemur.certificates.views. CertificateExport
Bases: lemur.auth.service.AuthenticatedResource

4.4. Internals 121

Lemur Documentation, Release 0.5.0

endpoint = ‘exportCertificate’

mediatypes (resource_cls)

methods = [’POST’]

post (certificate_id, data=None)

POST /certificates/1/export
Export a certificate

Example request:

PUT /certificates/1/export HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"export": {

"plugin": {
"pluginOptions": [{

"available": ["Java Key Store (JKS)"],
"required": true,
"type": "select",
"name": "type",
"helpMessage": "Choose the format you wish to export",
"value": "Java Key Store (JKS)"

}, {
"required": false,
"type": "str",
"name": "passphrase",
"validation": "^(?=.*[A-Za-z])(?=.*\d)(?=.*[$@$!%*#?&])[A-

→˓Za-z\d$@$!%*#?&]{8,}$",
"helpMessage": "If no passphrase is given one will be

→˓generated for you, we highly recommend this. Minimum length is 8."
}, {

"required": false,
"type": "str",
"name": "alias",
"helpMessage": "Enter the alias you wish to use for the

→˓keystore."
}],
"version": "unknown",
"description": "Attempts to generate a JKS keystore or

→˓truststore",
"title": "Java",
"author": "Kevin Glisson",
"type": "export",
"slug": "java-export"

}
}

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

122 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

{
"data": "base64encodedstring",
"passphrase": "UAWOHW#&@_%!tnwmxh832025",
"extension": "jks"

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.certificates.views. CertificatePrivateKey
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘privateKeyCertificates’

get (certificate_id)

GET /certificates/1/key
Retrieves the private key for a given certificate

Example request:

GET /certificates/1/key HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"key": "-----BEGIN ...",

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.certificates.views. Certificates
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘certificate’

4.4. Internals 123

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

get (certificate_id)

GET /certificates/1
One certificate

Example request:

GET /certificates/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",

124 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

"roles": [{
"id": 464,
"description": "This is a google group based role created by Lemur

→˓",
"name": "joe@example.com"

}],
"san": null

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (certificate_id, data=None)

PUT /certificates/1
Update a certificate

Example request:

PUT /certificates/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"owner": "jimbob@example.com",
"active": false
"notifications": [],
"destinations": [],
"replacements": []

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},

4.4. Internals 125

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by Lemur

→˓",
"name": "joe@example.com"

}],
"san": null

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.certificates.views. CertificatesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ endpoint

endpoint = ‘certificates’

get ()

126 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

GET /certificates
The current list of certificates

Example request:

GET /certificates HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

4.4. Internals 127

Lemur Documentation, Release 0.5.0

"id": 464,
"description": "This is a google group based role created by

→˓Lemur",
"name": "joe@example.com"

}],
"san": null

}],
"total": 1

}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int. default is 1

• filter – key value pair format is k;v

• count – count number. default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /certificates
Creates a new certificate

Example request:

POST /certificates HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"owner": "secure@example.net",
"commonName": "test.example.net",
"country": "US",
"extensions": {
"subAltNames": {
"names": [
{
"nameType": "DNSName",
"value": "*.test.example.net"

},
{
"nameType": "DNSName",
"value": "www.test.example.net"

}

128 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

]
}

},
"replacements": [{
"id": 1

},
"notify": true,
"validityEnd": "2026-01-01T08:00:00.000Z",
"authority": {
"name": "verisign"

},
"organization": "Netflix, Inc.",
"location": "Los Gatos",
"state": "California",
"validityStart": "2016-11-11T04:19:48.000Z",
"organizationalUnit": "Operations"

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

4.4. Internals 129

Lemur Documentation, Release 0.5.0

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [{

"id": 1
}],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by Lemur

→˓",
"name": "joe@example.com"

}],
"san": null

}

Parameters

• extensions – extensions to be used in the certificate

• description – description for new certificate

• owner – owner email

• validityStart – when the certificate should start being valid

• validityEnd – when the certificate should expire

• authority – authority that should issue the certificate

• country – country for the CSR

• state – state for the CSR

• location – location for the CSR

• organization – organization for CSR

• commonName – certificate common name

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.certificates.views. CertificatesReplacementsList
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘replacements’

get (certificate_id)

GET /certificates/1/replacements
One certificate

Example request:

130 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

GET /certificates/1/replacements HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by

→˓Lemur",
"name": "joe@example.com"

4.4. Internals 131

Lemur Documentation, Release 0.5.0

}],
"san": null

}],
"total": 1

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.certificates.views. CertificatesStats
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ stats endpoint

endpoint = ‘certificateStats’

get ()

mediatypes (resource_cls)

methods = [’GET’]

class lemur.certificates.views. CertificatesUpload
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ upload endpoint

endpoint = ‘certificateUpload’

mediatypes (resource_cls)

methods = [’POST’]

post (data=None)

POST /certificates/upload
Upload a certificate

Example request:

POST /certificates/upload HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"owner": "joe@example.com",
"publicCert": "-----BEGIN CERTIFICATE-----...",
"intermediateCert": "-----BEGIN CERTIFICATE-----...",
"privateKey": "-----BEGIN RSA PRIVATE KEY-----..."
"destinations": [],
"notifications": [],
"replacements": [],

132 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"name": "cert1"
}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1
}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by Lemur

→˓",
"name": "joe@example.com"

}],
"san": null

}

4.4. Internals 133

Lemur Documentation, Release 0.5.0

Parameters

• owner – owner email for certificate

• publicCert – valid PEM public key for certificate

:arg intermediateCert valid PEM intermediate key for certificate :arg privateKey: valid PEM private
key for certificate :arg destinations: list of aws destinations to upload the certificate to :reqheader
Authorization: OAuth token to authenticate :statuscode 403: unauthenticated :statuscode 200: no
error

class lemur.certificates.views. NotificationCertificatesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ endpoint

endpoint = ‘notificationCertificates’

get (notification_id)

GET /notifications/1/certificates
The current list of certificates for a given notification

Example request:

GET /notifications/1/certificates HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"status": null,
"cn": "*.test.example.net",
"chain": "",
"authority": {

"active": true,
"owner": "secure@example.com",
"id": 1,
"description": "verisign test authority",
"name": "verisign"

},
"owner": "joe@example.com",
"serial": "82311058732025924142789179368889309156",
"id": 2288,
"issuer": "SymantecCorporation",
"notBefore": "2016-06-03T00:00:00+00:00",
"notAfter": "2018-01-12T23:59:59+00:00",
"destinations": [],
"bits": 2048,
"body": "-----BEGIN CERTIFICATE-----...",
"description": null,
"deleted": null,
"notifications": [{

"id": 1

134 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

}]
"signingAlgorithm": "sha256",
"user": {

"username": "jane",
"active": true,
"email": "jane@example.com",
"id": 2

},
"active": true,
"domains": [{

"sensitive": false,
"id": 1090,
"name": "*.test.example.net"

}],
"replaces": [],
"replaced": [],
"name": "WILDCARD.test.example.net-SymantecCorporation-20160603-

→˓20180112",
"roles": [{

"id": 464,
"description": "This is a google group based role created by

→˓Lemur",
"name": "joe@example.com"

}],
"san": null

}],
"total": 1

}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

common Package

health Module

lemur.common.health. health ()

4.4. Internals 135

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

managers Module

class lemur.common.managers. InstanceManager (class_list=None, instances=True)
Bases: object

add (class_path)

all ()
Returns a list of cached instances.

get_class_list ()

remove (class_path)

update (class_list)
Updates the class list and wipes the cache.

utils Module

lemur.common.utils. column_windows (session, column, windowsize)
Return a series of WHERE clauses against a given column that break it into windows.

Result is an iterable of tuples, consisting of ((start, end), whereclause), where (start, end) are the ids.

Requires a database that supports window functions, i.e. Postgresql, SQL Server, Oracle.

Enhance this yourself ! Add a “where” argument so that windows of just a subset of rows can be computed.

lemur.common.utils. generate_private_key (key_type)
Generates a new private key based on key_type.

Valid key types: RSA2048, RSA4096

Parameters key_type –

Returns

lemur.common.utils. get_psuedo_random_string ()
Create a random and strongish challenge.

lemur.common.utils. is_weekend (date)
Determines if a given date is on a weekend.

Parameters date –

Returns

lemur.common.utils. parse_certificate (body)
Helper function that parses a PEM certificate.

Parameters body –

Returns

lemur.common.utils. validate_conf (app, required_vars)
Ensures that the given fields are set in the applications conf.

Parameters

• app –

• required_vars – list

lemur.common.utils. windowed_query (q, column, windowsize)
“Break a Query into windows on a given column.

136 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

destinations Package

models Module

class lemur.destinations.models. Destination (**kwargs)
Bases: flask_sqlalchemy.Model

description

id

label

options

plugin

plugin_name

service Module

lemur.destinations.service. create (label, plugin_name, options, description=None)
Creates a new destination, that can then be used as a destination for certificates.

Parameters

• label – Destination common name

• description –

:rtype : Destination :return: New destination

lemur.destinations.service. delete (destination_id)
Deletes an destination.

Parameters destination_id – Lemur assigned ID

lemur.destinations.service. get (destination_id)
Retrieves an destination by its lemur assigned ID.

Parameters destination_id – Lemur assigned ID

:rtype : Destination :return:

lemur.destinations.service. get_all ()
Retrieves all destination currently known by Lemur.

Returns

lemur.destinations.service. get_by_label (label)
Retrieves a destination by its label

Parameters label –

Returns

lemur.destinations.service. render (args)

lemur.destinations.service. stats (**kwargs)
Helper that defines some useful statistics about destinations.

Parameters kwargs –

Returns

4.4. Internals 137

Lemur Documentation, Release 0.5.0

lemur.destinations.service. update (destination_id, label, options, description)
Updates an existing destination.

Parameters

• destination_id – Lemur assigned ID

• label – Destination common name

• description –

:rtype : Destination :return:

views Module

class lemur.destinations.views. CertificateDestinations
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificate/<int:certificate_id/destinations” endpoint

endpoint = ‘certificateDestinations’

get (certificate_id)

GET /certificates/1/destinations
The current account list for a given certificates

Example request:

GET /certificates/1/destinations HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"description": "test",
"options": [{

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

138 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

}],
"description": "Allow the uploading of certificates to AWS IAM

→˓",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}
"total": 1

}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.destinations.views. Destinations
Bases: lemur.auth.service.AuthenticatedResource

delete (destination_id)

endpoint = ‘destination’

get (destination_id)

GET /destinations/1
Get a specific account

Example request:

GET /destinations/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "test",
"options": [{

4.4. Internals 139

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’DELETE’, ‘GET’, ‘PUT’]

put (destination_id, data=None)

PUT /destinations/1
Updates an account

Example request:

POST /destinations/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"description": "test33",
"options": [{

"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,

140 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"plugin": {
"pluginOptions": [{

"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "test",
"options": [{

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

Parameters

• accountNumber – aws account number

• label – human readable account label

• description – some description about the account

Request Headers

4.4. Internals 141

Lemur Documentation, Release 0.5.0

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

class lemur.destinations.views. DestinationsList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘destinations’ endpoint

endpoint = ‘destinations’

get ()

GET /destinations
The current account list

Example request:

GET /destinations HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [{

"description": "test",
"options": [{

"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM

→˓",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}
"total": 1

}

142 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int. default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /destinations
Creates a new account

Example request:

POST /destinations HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"description": "test33",
"options": [{

"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

4.4. Internals 143

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "test33",
"options": [{

"name": "accountNumber",
"required": true,
"value": "34324324",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"id": 4,
"plugin": {

"pluginOptions": [{
"name": "accountNumber",
"required": true,
"value": "111111111111111",
"helpMessage": "Must be a valid AWS account number!",
"validation": "/^[0-9]{12,12}$/",
"type": "str"

}],
"description": "Allow the uploading of certificates to AWS IAM",
"slug": "aws-destination",
"title": "AWS"

},
"label": "test546"

}

Parameters

• label – human readable account label

• description – some description about the account

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

class lemur.destinations.views. DestinationsStats
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificates’ stats endpoint

endpoint = ‘destinationStats’

get ()

mediatypes (resource_cls)

methods = [’GET’]

144 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

domains Package

models Module

class lemur.domains.models. Domain (**kwargs)
Bases: flask_sqlalchemy.Model

id

name

sensitive

service Module

lemur.domains.service. create (name, sensitive)
Create a new domain

Parameters

• name –

• sensitive –

Returns

lemur.domains.service. get (domain_id)
Fetches one domain

Parameters domain_id –

Returns

lemur.domains.service. get_all ()
Fetches all domains

Returns

lemur.domains.service. get_by_name (name)
Fetches domain by its name

Parameters name –

Returns

lemur.domains.service. render (args)
Helper to parse REST Api requests

Parameters args –

Returns

lemur.domains.service. update (domain_id, name, sensitive)
Update an existing domain

Parameters

• domain_id –

• name –

• sensitive –

Returns

4.4. Internals 145

Lemur Documentation, Release 0.5.0

views Module

class lemur.domains.views. CertificateDomains
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘domains’ endpoint

endpoint = ‘certificateDomains’

get (certificate_id)

GET /certificates/1/domains
The current domain list

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "www.example.com",
"sensitive": false

},
{
"id": 2,
"name": "www.example2.com",
"sensitive": false

}
]

"total": 2
}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

146 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.domains.views. Domains
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘domain’

get (domain_id)

GET /domains/1
Fetch one domain

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "www.example.com",
"sensitive": false

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (domain_id, data=None)

GET /domains/1
update one domain

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "www.example.com",

4.4. Internals 147

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

"sensitive": false
}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "www.example.com",
"sensitive": false

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.domains.views. DomainsList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘domains’ endpoint

endpoint = ‘domains’

get ()

GET /domains
The current domain list

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "www.example.com",
"sensitive": false

},
{
"id": 2,
"name": "www.example2.com",
"sensitive": false

148 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

}
]

"total": 2
}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number. default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /domains
The current domain list

Example request:

GET /domains HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "www.example.com",
"sensitive": false

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "www.example.com",
"sensitive": false

}

Query Parameters

4.4. Internals 149

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

notifications Package

models Module

class lemur.notifications.models. Notification (**kwargs)
Bases: flask_sqlalchemy.Model

active

certificates

description

id

label

options

plugin

plugin_name

service Module

lemur.notifications.service. create (label, plugin_name, options, description, certificates)
Creates a new notification.

Parameters

• label – Notification label

• plugin_name –

• options –

• description –

• certificates –

:rtype : Notification :return:

150 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

lemur.notifications.service. create_default_expiration_notifications (name,
recipi-
ents)

Will create standard 30, 10 and 2 day notifications for a given owner. If standard notifications already exist these
will be returned instead of new notifications.

Parameters

• name –

• recipients –

Returns

lemur.notifications.service. delete (notification_id)
Deletes an notification.

Parameters notification_id – Lemur assigned ID

lemur.notifications.service. get (notification_id)
Retrieves an notification by its lemur assigned ID.

Parameters notification_id – Lemur assigned ID

:rtype : Notification :return:

lemur.notifications.service. get_all ()
Retrieves all notification currently known by Lemur.

Returns

lemur.notifications.service. get_by_label (label)
Retrieves a notification by its label

Parameters label –

Returns

lemur.notifications.service. render (args)

lemur.notifications.service. update (notification_id, label, options, description, active, certifi-
cates)

Updates an existing notification.

Parameters

• notification_id –

• label – Notification label

• options –

• description –

• active –

• certificates –

:rtype : Notification :return:

views Module

class lemur.notifications.views. CertificateNotifications
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘certificate/<int:certificate_id/notifications” endpoint

4.4. Internals 151

Lemur Documentation, Release 0.5.0

endpoint = ‘certificateNotifications’

get (certificate_id)

GET /certificates/1/notifications
The current account list for a given certificates

Example request:

GET /certificates/1/notifications HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"description": "An example",
"options": [

{
"name": "interval",
"required": true,
"value": 555,
"helpMessage": "Number of days to be alert before

→˓expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses

→˓",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$

→˓",
"type": "str"

}
],
"label": "example",
"pluginName": "email-notification",

152 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

"active": true,
"id": 2

}
],
"total": 1

}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.notifications.views. Notifications
Bases: lemur.auth.service.AuthenticatedResource

delete (notification_id)

endpoint = ‘notification’

get (notification_id)

GET /notifications/1
Get a specific account

Example request:

GET /notifications/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "a test",
"options": [

{
"name": "interval",
"required": true,
"value": 5,

4.4. Internals 153

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"helpMessage": "Number of days to be alert before expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "test",
"pluginName": "email-notification",
"active": true,
"id": 2

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’DELETE’, ‘GET’, ‘PUT’]

put (notification_id, data=None)

PUT /notifications/1
Updates an account

Example request:

POST /notifications/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept

154 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Content-Type: text/javascript

{
"id": 1,
"accountNumber": 11111111111,
"label": "labelChanged",
"comments": "this is a thing"

}

Parameters

• accountNumber – aws account number

• label – human readable account label

• comments – some description about the account

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

class lemur.notifications.views. NotificationsList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘notifications’ endpoint

endpoint = ‘notifications’

get ()

GET /notifications
The current account list

Example request:

GET /notifications HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"description": "An example",
"options": [

{
"name": "interval",
"required": true,
"value": 5,
"helpMessage": "Number of days to be alert before

→˓expiration.",
"validation": "^\d+$",

4.4. Internals 155

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"type": "int"
},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses

→˓",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$

→˓",
"type": "str"

}
],
"label": "example",
"pluginName": "email-notification",
"active": true,
"id": 2

}
],
"total": 1

}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

156 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

POST /notifications
Creates a new account

Example request:

POST /notifications HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"description": "a test",
"options": [

{
"name": "interval",
"required": true,
"value": 5,
"helpMessage": "Number of days to be alert before expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "test",
"pluginName": "email-notification",
"active": true,
"id": 2

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"description": "a test",
"options": [

{
"name": "interval",

4.4. Internals 157

Lemur Documentation, Release 0.5.0

"required": true,
"value": 5,
"helpMessage": "Number of days to be alert before expiration.",
"validation": "^\d+$",
"type": "int"

},
{

"available": [
"days",
"weeks",
"months"

],
"name": "unit",
"required": true,
"value": "weeks",
"helpMessage": "Interval unit",
"validation": "",
"type": "select"

},
{

"name": "recipients",
"required": true,
"value": "kglisson@netflix.com,example@netflix.com",
"helpMessage": "Comma delimited list of email addresses",
"validation": "^([\w+-.%]+@[\w-.]+\.[A-Za-z]{2,4},?)+$",
"type": "str"

}
],
"label": "test",
"pluginName": "email-notification",
"active": true,
"id": 2

}

Parameters

• accountNumber – aws account number

• label – human readable account label

• comments – some description about the account

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

plugins Package

plugins Package

158 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

views Module

class lemur.plugins.views. Plugins
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘plugins’ endpoint

endpoint = ‘pluginName’

get (name)

GET /plugins/<name>
The current plugin list

Example request:

GET /plugins HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"accountNumber": 222222222,
"label": "account2",
"description": "this is a thing"

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.plugins.views. PluginsList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘plugins’ endpoint

endpoint = ‘plugins’

get ()

GET /plugins
The current plugin list

Example request:

GET /plugins HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

4.4. Internals 159

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 2,
"accountNumber": 222222222,
"label": "account2",
"description": "this is a thing"

},
{
"id": 1,
"accountNumber": 11111111111,
"label": "account1",
"description": "this is a thing"

},
]

"total": 2
}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

Subpackages

base Package

base Package

manager Module

class lemur.plugins.base.manager. PluginManager (class_list=None, instances=True)
Bases: lemur.common.managers.InstanceManager

all (version=1, plugin_type=None)

first (func_name, *args, **kwargs)

get (slug)

register (cls)

unregister (cls)

160 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

v1 Module

class lemur.plugins.base.v1. IPlugin
Bases: _thread._local

Plugin interface. Should not be inherited from directly. A plugin should be treated as if it were a singleton.
The owner does not control when or how the plugin gets instantiated, nor is it guaranteed that it will happen,
or happen more than once. >>> from lemur.plugins import Plugin >>> >>> class MyPlugin(Plugin): >>> def
get_title(self): >>> return ‘My Plugin’ As a general rule all inherited methods should allow **kwargs to
ensure ease of future compatibility.

author = None

author_url = None

can_disable = True

conf_key = None

conf_title = None

description = None

enabled = True

get_conf_key ()
Returns a string representing the configuration keyspace prefix for this plugin.

get_conf_title ()
Returns a string representing the title to be shown on the configuration page.

get_description ()
Returns the description for this plugin. This is shown on the plugin configuration page. >>> plu-
gin.get_description()

static get_option (name, options)

get_resource_links ()
Returns a list of tuples pointing to various resources for this plugin. >>> def get_resource_links(self):
>>> return [>>> (‘Documentation’, ‘http://lemury.readthedocs.org‘), >>> (‘Bug Tracker’, ‘https://github.
com/Netflix/lemur/issues‘), >>> (‘Source’, ‘https://github.com/Netflix/lemur‘), >>>]

get_title ()
Returns the general title for this plugin. >>> plugin.get_title()

is_enabled ()
Returns a boolean representing if this plugin is enabled. If project is passed, it will limit the scope to
that project. >>> plugin.is_enabled()

options = {}

resource_links = ()

slug = None

title = None

version = None

class lemur.plugins.base.v1. Plugin
Bases: lemur.plugins.base.v1.IPlugin

A plugin should be treated as if it were a singleton. The owner does not control when or how the plugin gets
instantiated, nor is it guaranteed that it will happen, or happen more than once.

4.4. Internals 161

http://lemury.readthedocs.org
https://github.com/Netflix/lemur/issues
https://github.com/Netflix/lemur/issues
https://github.com/Netflix/lemur

Lemur Documentation, Release 0.5.0

class lemur.plugins.base.v1. PluginMount
Bases: type

bases Package

bases Package

destination Module

class lemur.plugins.bases.destination. DestinationPlugin
Bases: lemur.plugins.base.v1.Plugin

requires_key = True

type = ‘destination’

upload (name, body, private_key, cert_chain, options, **kwargs)

issuer Module

class lemur.plugins.bases.issuer. IssuerPlugin
Bases: lemur.plugins.base.v1.Plugin

This is the base class from which all of the supported issuers will inherit from.

create_authority (options)

create_certificate (csr, issuer_options)

type = ‘issuer’

notification Module

class lemur.plugins.bases.notification. ExpirationNotificationPlugin
Bases: lemur.plugins.bases.notification.NotificationPlugin

This is the base class for all expiration notification plugins. It contains some default options that are needed for
all expiration notification plugins.

default_options = [{‘name’: ‘interval’, ‘type’: ‘int’, ‘required’: True, ‘validation’: ‘^\\d+$’, ‘helpMessage’: ‘Number of days to be alert before expiration.’}, {‘available’: [’days’, ‘weeks’, ‘months’], ‘name’: ‘unit’, ‘type’: ‘select’, ‘required’: True, ‘validation’: ‘’, ‘helpMessage’: ‘Interval unit’}]

options

send (notification_type, message, targets, options, **kwargs)

class lemur.plugins.bases.notification. NotificationPlugin
Bases: lemur.plugins.base.v1.Plugin

This is the base class from which all of the supported issuers will inherit from.

send (notification_type, message, targets, options, **kwargs)

type = ‘notification’

162 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

source Module

class lemur.plugins.bases.source. SourcePlugin
Bases: lemur.plugins.base.v1.Plugin

clean (certificate, options, **kwargs)

default_options = [{‘name’: ‘pollRate’, ‘type’: ‘int’, ‘required’: False, ‘helpMessage’: ‘Rate in seconds to poll source for new information.’, ‘default’: ‘60’}]

get_certificates (options, **kwargs)

get_endpoints (options, **kwargs)

options

type = ‘source’

lemur_aws Package

lemur_aws Package

elb Module

iam Module

plugin Module

sts Module

lemur_cfssl Package

lemur_cfssl Package

plugin Module

class lemur.plugins.lemur_cfssl.plugin. CfsslIssuerPlugin (*args, **kwargs)
Bases: lemur.plugins.bases.issuer.IssuerPlugin

author = ‘Charles Hendrie’

author_url = ‘https://github.com/netflix/lemur.git’

static create_authority (options)
Creates an authority, this authority is then used by Lemur to allow a user to specify which Certificate
Authority they want to sign their certificate.

Parameters options –

Returns

create_certificate (csr, issuer_options)
Creates a CFSSL certificate.

Parameters

• csr –

4.4. Internals 163

Lemur Documentation, Release 0.5.0

• issuer_options –

Returns

description = ‘Enables the creation of certificates by CFSSL private CA’

slug = ‘cfssl-issuer’

title = ‘CFSSL’

version = ‘unknown’

lemur_email Package

lemur_email Package

plugin Module

class lemur.plugins.lemur_email.plugin. EmailNotificationPlugin (*args, **kwargs)
Bases: lemur.plugins.bases.notification.ExpirationNotificationPlugin

additional_options = [{‘name’: ‘recipients’, ‘type’: ‘str’, ‘required’: True, ‘validation’: ‘^([\\w+-.%]+@[\\w-.]+\\.[A-Za-z]{2,4},?)+$’, ‘helpMessage’: ‘Comma delimited list of email addresses’}]

author = ‘Kevin Glisson’

author_url = ‘https://github.com/netflix/lemur’

description = ‘Sends expiration email notifications’

static send (notification_type, message, targets, options, **kwargs)

slug = ‘email-notification’

title = ‘Email’

version = ‘unknown’

lemur.plugins.lemur_email.plugin. render_html (template_name, message)
Renders the html for our email notification.

Parameters

• template_name –

• message –

Returns

lemur.plugins.lemur_email.plugin. send_via_ses (subject, body, targets)
Attempts to deliver email notification via SMTP. :param subject: :param body: :param targets: :return:

lemur.plugins.lemur_email.plugin. send_via_smtp (subject, body, targets)
Attempts to deliver email notification via SES service.

Parameters

• subject –

• body –

• targets –

Returns

164 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

Subpackages

templates Package

config Module

lemur.plugins.lemur_email.templates.config. human_time (time)

lemur.plugins.lemur_email.templates.config. interval (options)

lemur.plugins.lemur_email.templates.config. unit (options)

lemur_verisign Package

lemur_verisign Package

constants Module

plugin Module

class lemur.plugins.lemur_verisign.plugin. VerisignIssuerPlugin (*args, **kwargs)
Bases: lemur.plugins.bases.issuer.IssuerPlugin

author = ‘Kevin Glisson’

author_url = ‘https://github.com/netflix/lemur.git’

static create_authority (options)
Creates an authority, this authority is then used by Lemur to allow a user to specify which Certificate
Authority they want to sign their certificate.

Parameters options –

Returns

create_certificate (csr, issuer_options)
Creates a Verisign certificate.

Parameters

• csr –

• issuer_options –

Returns

raise Exception

description = ‘Enables the creation of certificates by the VICE2.0 verisign API.’

get_available_units ()
Uses the Verisign to fetch the number of available units left. This can be used to get tabs on the number
of certificates that can be issued.

Returns

get_pending_certificates ()
Uses Verisign to fetch the number of certificate awaiting approval.

Returns

4.4. Internals 165

Lemur Documentation, Release 0.5.0

slug = ‘verisign-issuer’

title = ‘Verisign’

version = ‘unknown’

class lemur.plugins.lemur_verisign.plugin. VerisignSourcePlugin (*args, **kwargs)
Bases: lemur.plugins.bases.source.SourcePlugin

author = ‘Kevin Glisson’

author_url = ‘https://github.com/netflix/lemur.git’

description = ‘Allows for the polling of issued certificates from the VICE2.0 verisign API.’

get_certificates ()

slug = ‘verisign-source’

title = ‘Verisign’

version = ‘unknown’

lemur.plugins.lemur_verisign.plugin. get_additional_names (options)
Return a list of strings to be added to a SAN certificates.

Parameters options –

Returns

lemur.plugins.lemur_verisign.plugin. get_default_issuance (options)
Gets the default time range for certificates

Parameters options –

Returns

lemur.plugins.lemur_verisign.plugin. handle_response (content)
Helper function for parsing responses from the Verisign API. :param content: :return: :raise Exception:

lemur.plugins.lemur_verisign.plugin. log_status_code (r, *args, **kwargs)
Is a request hook that logs all status codes to the verisign api.

Parameters

• r –

• args –

• kwargs –

Returns

lemur.plugins.lemur_verisign.plugin. process_options (options)
Processes and maps the incoming issuer options to fields/options that verisign understands

Parameters options –

Returns dict or valid verisign options

roles Package

models Module

class lemur.roles.models. Role (**kwargs)
Bases: flask_sqlalchemy.Model

166 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

authorities

authority_id

certificates

description

id

name

password

user_id

username

users

service Module

lemur.roles.service. create (name, password=None, description=None, username=None,
users=None)

Create a new role

Parameters

• name –

• users –

• description –

• username –

• password –

Returns

lemur.roles.service. delete (role_id)
Remove a role

Parameters role_id –

Returns

lemur.roles.service. get (role_id)
Retrieve a role by ID

Parameters role_id –

Returns

lemur.roles.service. get_by_name (role_name)
Retrieve a role by its name

Parameters role_name –

Returns

lemur.roles.service. render (args)
Helper that filters subsets of roles depending on the parameters passed to the REST Api

Parameters args –

Returns

4.4. Internals 167

Lemur Documentation, Release 0.5.0

lemur.roles.service. update (role_id, name, description, users)
Update a role

Parameters

• role_id –

• name –

• description –

• users –

Returns

views Module

class lemur.roles.views. AuthorityRolesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘roles’ endpoint

endpoint = ‘authorityRoles’

get (authority_id)

GET /authorities/1/roles
List of roles for a given authority

Example request:

GET /authorities/1/roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "role1",
"description": "this is role1"

},
{
"id": 2,
"name": "role2",
"description": "this is role2"

}
]

"total": 2
}

Query Parameters

• sortBy – field to sort on

168 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.roles.views. RoleViewCredentials
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘roleCredentials‘’

get (role_id)

GET /roles/1/credentials
View a roles credentials

Example request:

GET /users/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"username: "ausername",
"password": "apassword"

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’]

class lemur.roles.views. Roles
Bases: lemur.auth.service.AuthenticatedResource

4.4. Internals 169

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

delete (role_id)

DELETE /roles/1
Delete a role

Example request:

DELETE /roles/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"message": "ok"

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

endpoint = ‘role’

get (role_id)

GET /roles/1
Get a particular role

Example request:

GET /roles/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "role1",
"description": "this is role1"

}

Request Headers

• Authorization – OAuth token to authenticate

170 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2

Lemur Documentation, Release 0.5.0

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’DELETE’, ‘GET’, ‘PUT’]

put (role_id, data=None)

PUT /roles/1
Update a role

Example request:

PUT /roles/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"name": "role1",
"description": "This is a new description"

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"name": "role1",
"description": "this is a new description"

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.roles.views. RolesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘roles’ endpoint

endpoint = ‘roles’

get ()

GET /roles
The current role list

Example request:

4.4. Internals 171

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

GET /roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "role1",
"description": "this is role1"

},
{
"id": 2,
"name": "role2",
"description": "this is role2"

}
]

"total": 2
}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /roles
Creates a new role

Example request:

POST /roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

172 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

{
"name": "role3",
"description": "this is role3",
"username": null,
"password": null,
"users": [

{'id': 1}
]

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 3,
"description": "this is role3",
"name": "role3"

}

Parameters

• name – name for new role

• description – description for new role

• password – password for new role

• username – username for new role

• users – list, of users to associate with role

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

• 403 Forbidden – unauthenticated

class lemur.roles.views. UserRolesList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘roles’ endpoint

endpoint = ‘userRoles’

get (user_id)

GET /users/1/roles
List of roles for a given user

Example request:

GET /users/1/roles HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

4.4. Internals 173

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4

Lemur Documentation, Release 0.5.0

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 1,
"name": "role1",
"description": "this is role1"

},
{
"id": 2,
"name": "role2",
"description": "this is role2"

}
]

"total": 2
}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

users Package

models Module

class lemur.users.models. User (**kwargs)
Bases: flask_sqlalchemy.Model

active

authorities

certificates

check_password (password)
Hash a given password and check it against the stored value to determine it’s validity.

174 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Parameters password –

Returns

confirmed_at

email

hash_password ()
Generate the secure hash for the password.

Returns

id

is_admin
Determine if the current user has the ‘admin’ role associated with it.

Returns

logs

password

profile_picture

roles

username

lemur.users.models. hash_password (mapper, connect, target)
Helper function that is a listener and hashes passwords before insertion into the database.

Parameters

• mapper –

• connect –

• target –

service Module

lemur.users.service. create (username, password, email, active, profile_picture, roles)
Create a new user

Parameters

• username –

• password –

• email –

• active –

• profile_picture –

• roles –

Returns

lemur.users.service. get (user_id)
Retrieve a user from the database

Parameters user_id –

4.4. Internals 175

Lemur Documentation, Release 0.5.0

Returns

lemur.users.service. get_all ()
Retrieve all users from the database.

Returns

lemur.users.service. get_by_email (email)
Retrieve a user from the database by their email address

Parameters email –

Returns

lemur.users.service. get_by_username (username)
Retrieve a user from the database by their username

Parameters username –

Returns

lemur.users.service. render (args)
Helper that paginates and filters data when requested through the REST Api

Parameters args –

Returns

lemur.users.service. update (user_id, username, email, active, profile_picture, roles)
Updates an existing user

Parameters

• user_id –

• username –

• email –

• active –

• profile_picture –

• roles –

Returns

lemur.users.service. update_roles (user, roles)
Replaces the roles with new ones. This will detect when are roles added as well as when there are roles removed.

Parameters

• user –

• roles –

views Module

class lemur.users.views. CertificateUsers
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘certificateCreator’

get (certificate_id)

176 Chapter 4. Developers

Lemur Documentation, Release 0.5.0

GET /certificates/1/creator
Get a certificate’s creator

Example request:

GET /certificates/1/creator HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"active": false,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.users.views. Me
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘me’

get ()

GET /auth/me
Get the currently authenticated user

Example request:

GET /auth/me HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"active": false,
"email": "user1@example.com",

4.4. Internals 177

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"username": "user1",
"profileImage": null

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.users.views. RoleUsers
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘roleUsers’

get (role_id)

GET /roles/1/users
Get all users associated with a role

Example request:

GET /roles/1/users HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{
"id": 2,
"active": True,
"email": "user2@example.com",
"username": "user2",
"profileImage": null

},
{
"id": 1,
"active": False,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}
]

"total": 2
}

Request Headers

178 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’]

class lemur.users.views. Users
Bases: lemur.auth.service.AuthenticatedResource

endpoint = ‘user’

get (user_id)

GET /users/1
Get a specific user

Example request:

GET /users/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"active": false,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘PUT’]

put (user_id, data=None)

PUT /users/1
Update a user

Example request:

PUT /users/1 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

4.4. Internals 179

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

{
"username": "user1",
"email": "user1@example.com",
"active": false,
"roles": [

{'id': 1} - or - {'name': 'myRole'}
]

}

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 1,
"username": "user1",
"email": "user1@example.com",
"active": false,
"profileImage": null

}

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

class lemur.users.views. UsersList
Bases: lemur.auth.service.AuthenticatedResource

Defines the ‘users’ endpoint

endpoint = ‘users’

get ()

GET /users
The current user list

Example request:

GET /users HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"items": [

{

180 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

"id": 2,
"active": True,
"email": "user2@example.com",
"username": "user2",
"profileImage": null

},
{

"id": 1,
"active": False,
"email": "user1@example.com",
"username": "user1",
"profileImage": null

}
]
"total": 2

}

Query Parameters

• sortBy – field to sort on

• sortDir – asc or desc

• page – int default is 1

• filter – key value pair format is k;v

• count – count number default is 10

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

mediatypes (resource_cls)

methods = [’GET’, ‘POST’]

post (data=None)

POST /users
Creates a new user

Example request:

POST /users HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

{
"username": "user3",
"email": "user3@example.com",
"active": true,
"roles": [

{'id': 1} - or - {'name': 'myRole'}
]

}

4.4. Internals 181

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Lemur Documentation, Release 0.5.0

Example response:

HTTP/1.1 200 OK
Vary: Accept
Content-Type: text/javascript

{
"id": 3,
"active": True,
"email": "user3@example.com,
"username": "user3",
"profileImage": null

}

Parameters

• username – username for new user

• email – email address for new user

• password – password for new user

• active – boolean, if the user is currently active

• roles – list, roles that the user should be apart of

Request Headers

• Authorization – OAuth token to authenticate

Status Codes

• 200 OK – no error

182 Chapter 4. Developers

http://tools.ietf.org/html/rfc7235#section-4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

CHAPTER 5

Security

Security

We take the security of lemur seriously. The following are a set of policies we have adopted to ensure that security
issues are addressed in a timely fashion.

Reporting a security issue

We ask that you do not report security issues to our normal GitHub issue tracker.

If you believe you’ve identified a security issue with lemur , please report it to cloudsecurity@netflix.com
.

Once you’ve submitted an issue via email, you should receive an acknowledgment within 48 hours, and depending on
the action to be taken, you may receive further follow-up emails.

Supported Versions

At any given time, we will provide security support for the master branch as well as the 2 most recent releases.

Disclosure Process

Our process for taking a security issue from private discussion to public disclosure involves multiple steps.

Approximately one week before full public disclosure, we will send advance notification of the issue to a list of
people and organizations, primarily composed of operating-system vendors and other distributors of lemur . This
notification will consist of an email message containing:

• A full description of the issue and the affected versions of lemur .

• The steps we will be taking to remedy the issue.

• The patches, if any, that will be applied to lemur .

• The date on which the lemur team will apply these patches, issue new releases, and publicly disclose the issue.

Simultaneously, the reporter of the issue will receive notification of the date on which we plan to make the issue public.

On the day of disclosure, we will take the following steps:

183

https://github.com/Netflix/lemur

Lemur Documentation, Release 0.5.0

• Apply the relevant patches to the lemur repository. The commit messages for these patches will indicate that
they are for security issues, but will not describe the issue in any detail; instead, they will warn of upcoming
disclosure.

• Issue the relevant releases.

If a reported issue is believed to be particularly time-sensitive – due to a known exploit in the wild, for example – the
time between advance notification and public disclosure may be shortened considerably.

The list of people and organizations who receives advanced notification of security issues is not, and will not, be
made public. This list generally consists of high-profile downstream distributors and is entirely at the discretion of the
lemur team.

184 Chapter 5. Security

CHAPTER 6

Doing a Release

Doing a release

Doing a release of lemur requires a few steps.

Bumping the version number

The next step in doing a release is bumping the version number in the software.

• Update the version number in lemur/__about__.py .

• Set the release date in the Changelog.

• Do a commit indicating this.

• Send a pull request with this.

• Wait for it to be merged.

Performing the release

The commit that merged the version number bump is now the official release commit for this release. You will need
to have gpg installed and a gpg key in order to do a release. Once this has happened:

• Run invoke release {version} .

The release should now be available on PyPI and a tag should be available in the repository.

Verifying the release

You should verify that pip install lemur works correctly:

>>> import lemur
>>> lemur.__version__
'...'

Verify that this is the version you just released.

185

Lemur Documentation, Release 0.5.0

Post-release tasks

• Update the version number to the next major (e.g. 0.5.dev1) in lemur/__about__.py and

• Add new Changelog entry with next version and note that it is under active development

• Send a pull request with these items

• Check for any outstanding code undergoing a deprecation cycle by looking in lemur.utils for
DeprecatedIn** definitions. If any exist open a ticket to increment them for the next release.

186 Chapter 6. Doing a Release

CHAPTER 7

FAQ

Frequently Asked Questions

Common Problems

In my startup logs I see ‘Aborting... Lemur cannot locate db encryption key, is LEMUR_ENCRYPTION_KEYS set?’
You likely have not correctly configured LEMUR_ENCRYPTION_KEYS. See administration/index for more
information.

I am seeing Lemur’s javascript load in my browser but not the CSS. Ensure that you are placing include
mime.types; to your Nginx static file location. See Production for example configurations.

After installing Lemur I am unable to login Ensure that you are trying to login with the credentials you entered
during lemur init. These are separate from the postgres database credentials.

Running ‘lemur db upgrade’ seems stuck. Most likely, the upgrade is stuck because an existing query on the
database is holding onto a lock that the migration needs.

To resolve, login to your lemur database and run:

SELECT * FROM pg_locks l INNER JOIN pg_stat_activity s ON (l.pid = s.pid) WHERE waiting
AND NOT granted;

This will give you a list of queries that are currently waiting to be executed. From there attempt to idenity the
PID of the query blocking the migration. Once found execute:

select pg_terminate_backend(<blocking-pid>);

See http://stackoverflow.com/questions/22896496/alembic-migration-stuck-with-postgresql for more.

How do I

... script the Lemur installation to bootstrap things like roles and users? Lemur is a simple Flask (Python) appli-
cation that runs using a utility runner. A script that creates a project and default user might look something like
this:

Bootstrap the Flask environment
from flask import current_app

from lemur.users.service import create as create_user
from lemur.roles.service import create as create_role
from lemur.accounts.service import create as create_account

187

http://stackoverflow.com/questions/22896496/alembic-migration-stuck-with-postgresql

Lemur Documentation, Release 0.5.0

role = create_role('aRole', 'this is a new role')
create_user('admin', 'password', 'lemur@nobody', True, [role]

188 Chapter 7. FAQ

CHAPTER 8

Reference

Changelog

0.5 - 2016-04-08

This release is most notable for dropping support for python2.7. All Lemur versions >0.4 will now support python3.5
only.

Big thanks to neilschelly for quite a lot of improvements to the lemur-cryptography plugin.

Other Highlights:

• Closed #501 - Endpoint resource as now kept in sync via an

expiration mechanism. Such that non-existant endpoints gracefully fall out of Lemur. Certificates are never removed
from Lemur.

• Closed #551 - Added the ability to create a 4096 bit key during certificate

creation. Closed #528 to ensure that issuer plugins supported the new 4096 bit keys.

• Closed #566 - Fixed an issue changing the notification status for certificates

without private keys.

• Closed #594 - Added replaced field indicating if a certificate has been superseded.

• Closed #602 - AWS plugin added support for ALBs for endpoint tracking.

Special thanks to all who helped with with this release, notably:

• RcRonco

• harmw

• jeremyguarini

See the full list of issues closed in 0.5.

Upgrading

Note: This release will need a slight migration change. Please follow the documentation to upgrade Lemur.

189

https://github.com/Netflix/lemur/issues/501
https://github.com/Netflix/lemur/pull/551
https://github.com/Netflix/lemur/pull/528
https://github.com/Netflix/lemur/issues/566
https://github.com/Netflix/lemur/issues/594
https://github.com/Netflix/lemur/issues/602
https://github.com/Netflix/lemur/milestone/4
https://lemur.readthedocs.io/en/latest/administration.html#upgrading-lemur

Lemur Documentation, Release 0.5.0

0.4 - 2016-11-17

There have been quite a few issues closed in this release. Some notables:

• Closed #284 - Created new models for Endpoints created associated

AWS ELB endpoint tracking code. This was the major stated goal of this milestone and should serve as the basis for
future enhancements of Lemur’s certificate ‘deployment’ capabilities.

• Closed #334 - Lemur not has the ability

to restrict certificate expiration dates to weekdays.

Several fixes/tweaks to Lemurs python3 support (thanks chadhendrie!)

This will most likely be the last release to support python2.7 moving Lemur to target python3 exclusively. Please
comment on issue #340 if this negatively affects your usage of Lemur.

See the full list of issues closed in 0.4.

Upgrading

Note: This release will need a slight migration change. Please follow the documentation to upgrade Lemur.

0.3.0 - 2016-06-06

This is quite a large upgrade, it is highly advised you backup your database before attempting to upgrade as this release
requires the migration of database structure as well as data.

Upgrading

Please follow the documentation to upgrade Lemur.

Source Plugin Owners

The dictionary returned from a source plugin has changed keys from public_certificate to body and intermedi-
ate_certificate to chain.

Issuer Plugin Owners

This release may break your plugins, the keys in issuer_options have been changed from camelCase to under_score.
This change was made to break a undue reliance on downstream options maintains a more pythonic naming convention.
Renaming these keys should be fairly trivial, additionally pull requests have been submitted to affected plugins to help
ease the transition.

Note: This change only affects issuer plugins and does not affect any other types of plugins.

• Closed #63 - Validates all endpoints with Marshmallow schemas, this allows for stricter input validation
and better error messages when validation fails.

• Closed #146 - Moved authority type to first pane of authority creation wizard.

190 Chapter 8. Reference

https://github.com/Netflix/lemur/issues/284
https://github.com/Netflix/lemur/issues/334
https://github.com/Netflix/lemur/milestone/3
https://lemur.readthedocs.io/en/latest/administration.html#upgrading-lemur
https://lemur.readthedocs.io/en/latest/administration.html#upgrading-lemur
https://github.com/Netflix/lemur/issues/63
https://github.com/Netflix/lemur/issues/146

Lemur Documentation, Release 0.5.0

• Closed #147 - Added and refactored the relationship between authorities and their root certificates. Dis-
plays the certificates (and chains) next the the authority in question.

• Closed #199 - Ensures that the dates submitted to Lemur during authority and certificate creation are ac-
tually dates.

• Closed #230 - Migrated authority dropdown to a ui-select based dropdown, this should be easier to deter-
mine what authorities are available and when an authority has actually been selected.

• Closed #254 - Forces certificate names to be generally unique. If a certificate name (generated or other-
wise) is found to be a duplicate we increment by appending a counter.

• Closed #254 - Switched to using Fernet generated passphrases for exported items. These are more sounds
that pseudo random passphrases generated before and have the nice property of being in base64.

• Closed #278 - Added ability to specify a custom name to certificate creation, previously this was only
available in the certificate import wizard.

• Closed #281 - Fixed an issue where notifications could not be removed from a certificate via the UI.

• Closed #289 - Fixed and issue where intermediates were not being properly exported.

• Closed #315 - Made how roles are associated with certificates and authorities much more explict, includ-
ing adding the ability to add roles directly to certificates and authorities on creation.

0.2.2 - 2016-02-05

• Closed #234 - Allows export plugins to define whether they need private key material (default is True)

• Closed #231 - Authorities were not respecting ‘owning’ roles and their users

• Closed #228 - Fixed documentation with correct filter values

• Closed #226 - Fixes issue were import_certificate was requiring replacement certificates to be specified

• Closed #224 - Fixed an issue where NPM might not be globally available (thanks AlexClineBB!)

• Closed #221 - Fixes several reported issues where older migration scripts were missing tables, this change
removes pre 0.2 migration scripts

• Closed #218 - Fixed an issue where export passphrases would not validate

0.2.1 - 2015-12-14

• Fixed bug with search not refreshing values

• Cleaned up documentation, including working supervisor example (thanks rpicard!)

• Closed #165 - Fixed an issue with email templates

• Closed #188 - Added ability to submit third party CSR

• Closed #176 - Java-export should allow user to specify truststore/keystore

• Closed #176 - Extended support for exporting certificate in P12 format

0.2.0 - 2015-12-02

• Closed #120 - Error messages not displaying long enough

• Closed #121 - Certificate create form should not be valid until a Certificate Authority object is available

8.1. Changelog 191

https://github.com/Netflix/lemur/issues/147
https://github.com/Netflix/lemur/issues/199
https://github.com/Netflix/lemur/issues/230
https://github.com/Netflix/lemur/issues/254
https://github.com/Netflix/lemur/issues/275
https://github.com/Netflix/lemur/issues/278
https://github.com/Netflix/lemur/issues/281
https://github.com/Netflix/lemur/issues/289
https://github.com/Netflix/lemur/issues/315
https://github.com/Netflix/lemur/issues/234
https://github.com/Netflix/lemur/issues/231
https://github.com/Netflix/lemur/issues/228
https://github.com/Netflix/lemur/issues/226
https://github.com/Netflix/lemur/issues/224
https://github.com/Netflix/lemur/issues/234
https://github.com/Netflix/lemur/issues/234

Lemur Documentation, Release 0.5.0

• Closed #122 - Certificate API should allow for the specification of preceding certificates You can now tar-
get a certificate(s) for replacement. When specified the replaced certificate will be marked as ‘inactive’.
This means that there will be no notifications for that certificate.

• Closed #139 - SubCA autogenerated descriptions for their certs are incorrect

• Closed #140 - Permalink does not change with filtering

• Closed #144 - Should be able to search certificates by domains covered, included wildcards

• Closed #165 - Cleaned up expiration notification template

• Closed #160 - Cleaned up quickstart documentation (thanks forkd!)

• Closed #144 - Now able to search by all domains in a given certificate, not just by common name

0.1.5 - 2015-10-26

• SECURITY ISSUE: Switched from use a AES static key to Fernet encryption. Affects all versions prior to
0.1.5. If upgrading this will require a data migration. see: Upgrading Lemur

License

Lemur is licensed under a three clause APACHE License.

The full license text can be found below (Lemur License).

Authors

Lemur was originally written and is maintained by Kevin Glisson.

A list of additional contributors can be seen on GitHub.

Lemur License

Apache License

Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is
granting the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are
controlled by, or are under common control with that entity. For the purposes of this definition,
“control” means (i) the power, direct or indirect, to cause the direction or management of such
entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

192 Chapter 8. Reference

https://lemur.readthedocs.com/adminstration#UpgradingLemur
https://github.com/netflix/lemur/contributors
http://www.apache.org/licenses/

Lemur Documentation, Release 0.5.0

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and
conversions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available
under the License, as indicated by a copyright notice that is included in or attached to the work (an
example is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of authorship. For the purposes of this Li-
cense, Derivative Works shall not include works that remain separable from, or merely link (or bind
by name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally sub-
mitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal
Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition,
“submitted” means any form of electronic, verbal, or written communication sent to the Licensor or
its representatives, including but not limited to communication on electronic mailing lists, source
code control systems, and issue tracking systems that are managed by, or on behalf of, the Licen-
sor for the purpose of discussing and improving the Work, but excluding communication that is
conspicuously marked or otherwise designated in writing by the copyright owner as “Not a Contri-
bution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof
in any medium, with or without modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License;
and

(b) You must cause any modified files to carry prominent notices stating that You changed the
files; and

8.2. License 193

Lemur Documentation, Release 0.5.0

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an addendum to the NOTICE
text from the Work, provided that such additional attribution notices cannot be construed as
modifying the License.

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions
of this License, without any additional terms or conditions. Notwithstanding the above, nothing
herein shall supersede or modify the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of
your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

194 Chapter 8. Reference

Lemur Documentation, Release 0.5.0

To apply the Apache License to your work, attach the following boilerplate notice, with
the fields enclosed by brackets “[]” replaced with your own identifying information. (Don’t
include the brackets!) The text should be enclosed in the appropriate comment syntax for
the file format. We also recommend that a file or class name and description of purpose be
included on the same “printed page” as the copyright notice for easier identification within
third-party archives.

Copyright 2014 Netflix, Inc.

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is dis-
tributed on an “AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific language governing permissions and limitations under
the License.

8.2. License 195

http://www.apache.org/licenses/LICENSE-2.0

Lemur Documentation, Release 0.5.0

196 Chapter 8. Reference

Python Module Index

l
lemur.auth.views, 48
lemur.authorities.views, 88
lemur.certificates.views, 75
lemur.destinations.views, 50
lemur.domains.views, 96
lemur.notifications.views, 57
lemur.roles.views, 69
lemur.users.views, 63

197

Lemur Documentation, Release 0.5.0

198 Python Module Index

HTTP Routing Table

/auth
GET /auth/me, 177
POST /auth/login, 106

/authorities
GET /authorities, 112
GET /authorities/1, 109
GET /authorities/1/roles, 168
POST /authorities, 113
PUT /authorities/1, 110

/certificates
GET /certificates, 126
GET /certificates/1, 124
GET /certificates/1/authority, 116
GET /certificates/1/creator, 176
GET /certificates/1/destinations, 138
GET /certificates/1/domains, 146
GET /certificates/1/key, 123
GET /certificates/1/notifications, 152
GET /certificates/1/replacements, 130
POST /certificates, 128
POST /certificates/1/export, 122
POST /certificates/upload, 132
PUT /certificates/1, 125

/destinations
GET /destinations, 142
GET /destinations/1, 139
POST /destinations, 143
PUT /destinations/1, 140

/domains
GET /domains, 148
GET /domains/1, 147
POST /domains, 149

/notifications
GET /notifications, 155
GET /notifications/1, 153

GET /notifications/1/certificates, 134
POST /notifications, 156
PUT /notifications/1, 154

/plugins
GET /plugins, 159
GET /plugins/<name>, 159

/roles
GET /roles, 171
GET /roles/1, 170
GET /roles/1/credentials, 169
GET /roles/1/users, 178
POST /roles, 172
PUT /roles/1, 171
DELETE /roles/1, 170

/users
GET /users, 180
GET /users/1, 179
GET /users/1/roles, 173
POST /users, 181
PUT /users/1, 179

199

Lemur Documentation, Release 0.5.0

200 HTTP Routing Table

Index

A
Authorities (class in lemur.authorities.views), 88
AuthoritiesList (class in lemur.authorities.views), 90
AuthorityRolesList (class in lemur.roles.views), 69
AuthorityVisualizations (class in

lemur.authorities.views), 94

C
CertificateAuthority (class in lemur.authorities.views), 94
CertificateDestinations (class in

lemur.destinations.views), 50
CertificateDomains (class in lemur.domains.views), 96
CertificateExport (class in lemur.certificates.views), 75
CertificateNotifications (class in

lemur.notifications.views), 57
CertificatePrivateKey (class in lemur.certificates.views),

76
Certificates (class in lemur.certificates.views), 76
CertificatesList (class in lemur.certificates.views), 79
CertificatesReplacementsList (class in

lemur.certificates.views), 83
CertificatesStats (class in lemur.certificates.views), 84
CertificatesUpload (class in lemur.certificates.views), 84
CertificateUsers (class in lemur.users.views), 63
check_revoked (built-in variable), 34
create_config (built-in variable), 34

D
delete() (lemur.destinations.views.Destinations method),

51
delete() (lemur.notifications.views.Notifications method),

58
delete() (lemur.roles.views.Roles method), 70
Destinations (class in lemur.destinations.views), 51
DestinationsList (class in lemur.destinations.views), 54
DestinationsStats (class in lemur.destinations.views), 56
Domains (class in lemur.domains.views), 97
DomainsList (class in lemur.domains.views), 98

E
endpoint (lemur.auth.views.Google attribute), 48

endpoint (lemur.auth.views.Login attribute), 49
endpoint (lemur.auth.views.OAuth2 attribute), 49
endpoint (lemur.auth.views.Ping attribute), 50
endpoint (lemur.auth.views.Providers attribute), 50
endpoint (lemur.authorities.views.Authorities attribute),

88
endpoint (lemur.authorities.views.AuthoritiesList at-

tribute), 91
endpoint (lemur.authorities.views.AuthorityVisualizations

attribute), 94
endpoint (lemur.authorities.views.CertificateAuthority at-

tribute), 94
endpoint (lemur.certificates.views.CertificateExport at-

tribute), 75
endpoint (lemur.certificates.views.CertificatePrivateKey

attribute), 76
endpoint (lemur.certificates.views.Certificates attribute),

76
endpoint (lemur.certificates.views.CertificatesList at-

tribute), 79
endpoint (lemur.certificates.views.CertificatesReplacementsList

attribute), 83
endpoint (lemur.certificates.views.CertificatesStats

attribute), 84
endpoint (lemur.certificates.views.CertificatesUpload at-

tribute), 85
endpoint (lemur.certificates.views.NotificationCertificatesList

attribute), 86
endpoint (lemur.destinations.views.CertificateDestinations

attribute), 50
endpoint (lemur.destinations.views.Destinations at-

tribute), 51
endpoint (lemur.destinations.views.DestinationsList at-

tribute), 54
endpoint (lemur.destinations.views.DestinationsStats at-

tribute), 56
endpoint (lemur.domains.views.CertificateDomains at-

tribute), 96
endpoint (lemur.domains.views.Domains attribute), 97
endpoint (lemur.domains.views.DomainsList attribute),

98

201

Lemur Documentation, Release 0.5.0

endpoint (lemur.notifications.views.CertificateNotifications
attribute), 57

endpoint (lemur.notifications.views.Notifications at-
tribute), 58

endpoint (lemur.notifications.views.NotificationsList at-
tribute), 60

endpoint (lemur.roles.views.AuthorityRolesList at-
tribute), 69

endpoint (lemur.roles.views.Roles attribute), 71
endpoint (lemur.roles.views.RolesList attribute), 72
endpoint (lemur.roles.views.RoleViewCredentials at-

tribute), 69
endpoint (lemur.roles.views.UserRolesList attribute), 74
endpoint (lemur.users.views.CertificateUsers attribute),

63
endpoint (lemur.users.views.Me attribute), 64
endpoint (lemur.users.views.RoleUsers attribute), 64
endpoint (lemur.users.views.Users attribute), 65
endpoint (lemur.users.views.UsersList attribute), 67

G
get() (lemur.auth.views.Providers method), 50
get() (lemur.authorities.views.Authorities method), 88
get() (lemur.authorities.views.AuthoritiesList method),

91
get() (lemur.authorities.views.AuthorityVisualizations

method), 94
get() (lemur.authorities.views.CertificateAuthority

method), 94
get() (lemur.certificates.views.CertificatePrivateKey

method), 76
get() (lemur.certificates.views.Certificates method), 76
get() (lemur.certificates.views.CertificatesList method),

79
get() (lemur.certificates.views.CertificatesReplacementsList

method), 83
get() (lemur.certificates.views.CertificatesStats method),

84
get() (lemur.certificates.views.NotificationCertificatesList

method), 86
get() (lemur.destinations.views.CertificateDestinations

method), 50
get() (lemur.destinations.views.Destinations method), 51
get() (lemur.destinations.views.DestinationsList method),

54
get() (lemur.destinations.views.DestinationsStats

method), 56
get() (lemur.domains.views.CertificateDomains method),

96
get() (lemur.domains.views.Domains method), 97
get() (lemur.domains.views.DomainsList method), 98
get() (lemur.notifications.views.CertificateNotifications

method), 57
get() (lemur.notifications.views.Notifications method), 58

get() (lemur.notifications.views.NotificationsList
method), 60

get() (lemur.roles.views.AuthorityRolesList method), 69
get() (lemur.roles.views.Roles method), 71
get() (lemur.roles.views.RolesList method), 72
get() (lemur.roles.views.RoleViewCredentials method),

70
get() (lemur.roles.views.UserRolesList method), 74
get() (lemur.users.views.CertificateUsers method), 63
get() (lemur.users.views.Me method), 64
get() (lemur.users.views.RoleUsers method), 64
get() (lemur.users.views.Users method), 65
get() (lemur.users.views.UsersList method), 67
Google (class in lemur.auth.views), 48

I
init (built-in variable), 34

L
lemur.auth.views (module), 48
lemur.authorities.views (module), 88
lemur.certificates.views (module), 75
lemur.destinations.views (module), 50
lemur.domains.views (module), 96
lemur.notifications.views (module), 57
lemur.roles.views (module), 69
lemur.users.views (module), 63
Login (class in lemur.auth.views), 48

M
Me (class in lemur.users.views), 64
mediatypes() (lemur.auth.views.Google method), 48
mediatypes() (lemur.auth.views.Login method), 49
mediatypes() (lemur.auth.views.OAuth2 method), 49
mediatypes() (lemur.auth.views.Ping method), 50
mediatypes() (lemur.auth.views.Providers method), 50
mediatypes() (lemur.authorities.views.Authorities

method), 89
mediatypes() (lemur.authorities.views.AuthoritiesList

method), 92
mediatypes() (lemur.authorities.views.AuthorityVisualizations

method), 94
mediatypes() (lemur.authorities.views.CertificateAuthority

method), 95
mediatypes() (lemur.certificates.views.CertificateExport

method), 75
mediatypes() (lemur.certificates.views.CertificatePrivateKey

method), 76
mediatypes() (lemur.certificates.views.Certificates

method), 78
mediatypes() (lemur.certificates.views.CertificatesList

method), 81
mediatypes() (lemur.certificates.views.CertificatesReplacementsList

method), 84

202 Index

Lemur Documentation, Release 0.5.0

mediatypes() (lemur.certificates.views.CertificatesStats
method), 84

mediatypes() (lemur.certificates.views.CertificatesUpload
method), 85

mediatypes() (lemur.certificates.views.NotificationCertificatesList
method), 88

mediatypes() (lemur.destinations.views.CertificateDestinations
method), 51

mediatypes() (lemur.destinations.views.Destinations
method), 52

mediatypes() (lemur.destinations.views.DestinationsList
method), 55

mediatypes() (lemur.destinations.views.DestinationsStats
method), 56

mediatypes() (lemur.domains.views.CertificateDomains
method), 97

mediatypes() (lemur.domains.views.Domains method),
97

mediatypes() (lemur.domains.views.DomainsList
method), 99

mediatypes() (lemur.notifications.views.CertificateNotifications
method), 58

mediatypes() (lemur.notifications.views.Notifications
method), 59

mediatypes() (lemur.notifications.views.NotificationsList
method), 61

mediatypes() (lemur.roles.views.AuthorityRolesList
method), 69

mediatypes() (lemur.roles.views.Roles method), 71
mediatypes() (lemur.roles.views.RolesList method), 73
mediatypes() (lemur.roles.views.RoleViewCredentials

method), 70
mediatypes() (lemur.roles.views.UserRolesList method),

74
mediatypes() (lemur.users.views.CertificateUsers

method), 64
mediatypes() (lemur.users.views.Me method), 64
mediatypes() (lemur.users.views.RoleUsers method), 65
mediatypes() (lemur.users.views.Users method), 66
mediatypes() (lemur.users.views.UsersList method), 68
methods (lemur.auth.views.Google attribute), 48
methods (lemur.auth.views.Login attribute), 49
methods (lemur.auth.views.OAuth2 attribute), 49
methods (lemur.auth.views.Ping attribute), 50
methods (lemur.auth.views.Providers attribute), 50
methods (lemur.authorities.views.Authorities attribute),

89
methods (lemur.authorities.views.AuthoritiesList at-

tribute), 92
methods (lemur.authorities.views.AuthorityVisualizations

attribute), 94
methods (lemur.authorities.views.CertificateAuthority at-

tribute), 95
methods (lemur.certificates.views.CertificateExport at-

tribute), 75
methods (lemur.certificates.views.CertificatePrivateKey

attribute), 76
methods (lemur.certificates.views.Certificates attribute),

78
methods (lemur.certificates.views.CertificatesList at-

tribute), 81
methods (lemur.certificates.views.CertificatesReplacementsList

attribute), 84
methods (lemur.certificates.views.CertificatesStats

attribute), 84
methods (lemur.certificates.views.CertificatesUpload at-

tribute), 85
methods (lemur.certificates.views.NotificationCertificatesList

attribute), 88
methods (lemur.destinations.views.CertificateDestinations

attribute), 51
methods (lemur.destinations.views.Destinations at-

tribute), 52
methods (lemur.destinations.views.DestinationsList at-

tribute), 55
methods (lemur.destinations.views.DestinationsStats at-

tribute), 56
methods (lemur.domains.views.CertificateDomains at-

tribute), 97
methods (lemur.domains.views.Domains attribute), 97
methods (lemur.domains.views.DomainsList attribute),

99
methods (lemur.notifications.views.CertificateNotifications

attribute), 58
methods (lemur.notifications.views.Notifications at-

tribute), 59
methods (lemur.notifications.views.NotificationsList at-

tribute), 61
methods (lemur.roles.views.AuthorityRolesList at-

tribute), 69
methods (lemur.roles.views.Roles attribute), 71
methods (lemur.roles.views.RolesList attribute), 73
methods (lemur.roles.views.RoleViewCredentials at-

tribute), 70
methods (lemur.roles.views.UserRolesList attribute), 74
methods (lemur.users.views.CertificateUsers attribute),

64
methods (lemur.users.views.Me attribute), 64
methods (lemur.users.views.RoleUsers attribute), 65
methods (lemur.users.views.Users attribute), 66
methods (lemur.users.views.UsersList attribute), 68

N
NotificationCertificatesList (class in

lemur.certificates.views), 86
Notifications (class in lemur.notifications.views), 58
NotificationsList (class in lemur.notifications.views), 60
notify (built-in variable), 35

Index 203

Lemur Documentation, Release 0.5.0

O
OAuth2 (class in lemur.auth.views), 49

P
Ping (class in lemur.auth.views), 50
post() (lemur.auth.views.Google method), 48
post() (lemur.auth.views.Login method), 49
post() (lemur.auth.views.OAuth2 method), 50
post() (lemur.auth.views.Ping method), 50
post() (lemur.authorities.views.AuthoritiesList method),

92
post() (lemur.certificates.views.CertificateExport

method), 75
post() (lemur.certificates.views.CertificatesList method),

81
post() (lemur.certificates.views.CertificatesUpload

method), 85
post() (lemur.destinations.views.DestinationsList

method), 55
post() (lemur.domains.views.DomainsList method), 99
post() (lemur.notifications.views.NotificationsList

method), 61
post() (lemur.roles.views.RolesList method), 73
post() (lemur.users.views.UsersList method), 68
Providers (class in lemur.auth.views), 50
put() (lemur.authorities.views.Authorities method), 89
put() (lemur.certificates.views.Certificates method), 78
put() (lemur.destinations.views.Destinations method), 52
put() (lemur.domains.views.Domains method), 97
put() (lemur.notifications.views.Notifications method), 59
put() (lemur.roles.views.Roles method), 71
put() (lemur.users.views.Users method), 66

R
Roles (class in lemur.roles.views), 70
RolesList (class in lemur.roles.views), 72
RoleUsers (class in lemur.users.views), 64
RoleViewCredentials (class in lemur.roles.views), 69

S
start (built-in variable), 34
sync (built-in variable), 34

U
UserRolesList (class in lemur.roles.views), 73
Users (class in lemur.users.views), 65
UsersList (class in lemur.users.views), 67

204 Index

	Installation
	Quickstart
	Production

	User Guide
	User Guide

	Administration
	Configuration
	Command Line Interface
	Upgrading Lemur
	Plugins
	3rd Party Plugins
	Identity and Access Management

	Developers
	Contributing
	Writing a Plugin
	REST API
	Internals

	Security
	Security

	Doing a Release
	Doing a release

	FAQ
	Frequently Asked Questions

	Reference
	Changelog
	License

	Python Module Index
	HTTP Routing Table

